日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.

          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.
          【答案】分析:【探究】:過點F作GH∥AD,交AB于H,交DC的延長線于點G,求證△CFG≌△BFH即可;
          【知識應用】:分別過A、B、C、三點作x軸的垂線,由A、B的坐標,進而即可求解點C的坐標;
          【知識拓展】:由于點C、D的位置不確定,也即AB可能是平行四邊形的邊長,亦有可能是其對角線,所以應分幾種情況:
          即①當AB是平行四邊形一條邊,且點C在x軸的正半軸時,則AD與BC互相平分;
          ②當AB是平行四邊形一條邊,且點C在x軸的負半軸時,又是一種情況;
          ③當AB是對角線時,所以應分開來分別求解.
          解答:【探究】證明:過點F作GH∥AD,交AB于H,交DC的延長線于點G,

          ∵AH∥EF∥DG,AD∥GH,
          ∴四邊形AHFE和四邊形DEFG都是平行四邊形,
          ∴FH=AE,F(xiàn)G=DE,
          ∵AE=DE,
          ∴FG=FH,
          ∵AB∥DG,
          ∴∠G=∠FHB,∠GCF=∠B,
          ∴△CFG≌△BFH,
          ∴FC=FB;

          【知識應用】過點C作CM⊥x軸于點M,過點A作AN⊥x軸于點N,過點B作BP⊥x軸于點P,

          則點P的坐標為(x2,0),點N的坐標為(x1,0),
          由探究的結(jié)論可知,MN=MP,
          ∴點M的坐標為(,0),
          ∴點C的橫坐標為,
          同理可求點C的縱坐標為,
          ∴點C的坐標為().

          【知識拓展】
          ①當AB是平行四邊形一條邊,且點C在x軸的正半軸時,AD與BC互相平分,
          設點C的坐標為(a,0),點D的坐標為(0,y)
          由上面的結(jié)論可知:-6+a=4+0,-1+0=5+b,
          ∴a=10,b=-6,
          ∴此時點C的坐標為(10,0),點D的坐標為(0,-6),
          ②同理,當AB是平行四邊形一條邊,且點C在x軸的負半軸時,求得點C的坐標為(-10,0),點D的坐標為(0,6),
          ③當AB是對角線時點C的坐標為(-2,0),點D的坐標為(0,4).
          點評:本題主要考查了平行線的性質(zhì)以及平行四邊形的判定及性質(zhì)和坐標問題,應在理解的基礎上熟練求解.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF
          精英家教網(wǎng)
          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.
          精英家教網(wǎng)
          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.

          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年上海市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

          探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.

          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012年河南省中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

          探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.

          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年山東省濰坊市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

          探究:如圖,四邊形ABCD中,AB∥CD,E為AD的中點,若EF∥AB.求證:BF=CF

          知識應用:如圖,坐標平面內(nèi)有兩個點A和B其中點A的坐標為(x1,y1),點B的坐標為(x2,y2),求AB的中點C的坐標.

          知識拓展:在上圖中,點A的坐標為(4,5),點B的坐標為(-6,-1),分別在x軸和y軸上找一點C和D,使得以A、B、C、D為頂點的四邊形是平行四邊形,求出點C和點D的坐標.

          查看答案和解析>>

          同步練習冊答案