日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).

          (1)如圖①,當(dāng)α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是_____;
          (2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時,(1)中的結(jié)論變?yōu)镈E+DF=AD,請給出證明;
          (3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.

          【答案】
          (1)

          解:正方形ABCD的對角線AC,BD交于點P,

          ∴PA=PD,∠PAE=∠PDF=45°,

          ∵∠APE+∠EPD=∠DPF+∠EPD=90°,

          ∴∠APE=∠DPF,

          在△APE和△DPF中

          ∴△APE≌△DPF(ASA),

          ∴AE=DF,

          ∴DE+DF=AD;


          (2)

          解:如圖②,取AD的中點M,連接PM,

          ∵四邊形ABCD為∠ADC=120°的菱形,

          ∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,

          ∴△MDP是等邊三角形,

          ∴PM=PD,∠PME=∠PDF=60°,

          ∵∠PAM=30°,

          ∴∠MPD=60°,

          ∵∠QPN=60°,

          ∴∠MPE=∠FPD,

          在△MPE和△DPF中,

          ∴△MPE≌△DPF(ASA)

          ∴ME=DF,

          ∴DE+DF=AD;


          (3)

          解:如圖,

          在整個運動變化過程中,

          ①當(dāng)點E落在AD上時,DE+DF=AD;

          ②當(dāng)點E落在AD的延長線上時,DF﹣DE=AD.

          (如圖3,取AD中點M,連接PM,證明△MPE≌△DPF)


          【解析】(1)利用正方形的性質(zhì)得出角與線段的關(guān)系,易證得△APE≌△DPF,可得出AE=DF,即可得出結(jié)論DE+DF=AD,
          (2)取AD的中點M,連接PM,利用菱形的性質(zhì),可得出△MDP是等邊三角形,易證△MPE≌△FPD,得出ME=DF,由DE+ME=AD,即可得出DE+DF=AD,
          (3)①當(dāng)點E落在AD上時,DE+DF=AD,②當(dāng)點E落在AD的延長線上時,DF﹣DE=AD.
          【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2015年5月31日,我國飛人蘇炳添在美國尤金舉行的國際田聯(lián)鉆石聯(lián)賽100米男子比賽中,獲得好成績,成為歷史上首位突破10秒大關(guān)的黃種人.如表是蘇炳添近五次大賽參賽情況:

          比賽日期

          2012﹣8﹣4

          2013﹣5﹣21

          2014﹣9﹣28

          2015﹣5﹣20

          2015﹣5﹣31

          比賽地點

          英國倫敦

          中國北京

          韓國仁川

          中國北京

          美國尤金

          成績(秒)

          10.19

          10.06

          10.10

          10.06

          9.99

          則蘇炳添這五次比賽成績的眾數(shù)和平均數(shù)分別為( 。
          A.10.06秒,10.06秒
          B.10.10秒,10.06秒
          C.10.06秒,10.08秒
          D.10.08秒,10.06秒

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某賓館準(zhǔn)備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.
          (1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;
          (2)若該賓館準(zhǔn)備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設(shè)計出最省錢的購買方案,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
          (1)求AC、AD的長;
          (2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】育才中學(xué)計劃召開“誠信在我心中”主題教育活動,需要選拔活動主持人,經(jīng)過全校學(xué)生投票推薦,有2名男生和1名女生被推薦為候選主持人.
          (1)小明認(rèn)為,如果從3名候選主持人中隨機選拔1名主持人,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說法嗎?為什么?
          (2)如果從3名候選主持人中隨機選拔2名主持人,請通過列表或樹狀圖求選拔出的2名主持人恰好是1名男生和1名女生的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市計劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:綏中白梨,B:虹螺峴干豆腐,C:綏中六股河鴨蛋,D:興城紅崖子花生”四種特產(chǎn),在全市范圍內(nèi)隨機抽取了部分市民進行問卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖.

          (1)請補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
          (2)若全市有280萬市民,估計全市最喜歡“虹螺峴干豆腐”的市民約有多少萬人?
          (3)在一個不透明的口袋中有四個分別寫上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機摸出一個小球然后放回,混合搖勻后,再隨機摸出一個小球,則兩次都摸到“A”的概率為_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】不等式組的解集,在數(shù)軸上表示正確的是(  )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在Rt△ABC中,∠BAC=90°,過點B的直線MN∥AC,D為BC邊上一點,連接AD,作DE⊥AD交MN于點E,連接AE.

          (1)如圖①,當(dāng)∠ABC=45°時,求證:AD=DE;
          (2)如圖②,當(dāng)∠ABC=30°時,線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
          (3)當(dāng)∠ABC=α?xí)r,請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|x﹣a|+| x+1|的最小值為2. (Ⅰ)求實數(shù)a的值;
          (Ⅱ)若a>0,求不等式f(x)≤4的解集.

          查看答案和解析>>

          同步練習(xí)冊答案