日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在平面直角坐標(biāo)系中,點(diǎn)M(0,-3),⊙M與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C、E;拋物線y=ax2+(4a-2)x-8(a≠0)經(jīng)過A、C兩點(diǎn);
          (1)求點(diǎn)A、B、C的坐標(biāo);
          (2)當(dāng)a取何值時(shí),拋物線y=ax2+(4a-2)x-8(a≠0)的對稱軸與⊙M相切?
          (3)如圖2,當(dāng)拋物線的頂點(diǎn)D在第四象限內(nèi)時(shí),連接BC、BD,且tan∠CBD=
          ①試確定a的值;
          ②設(shè)此時(shí)的拋物線與x軸的另一個(gè)交點(diǎn)是點(diǎn)F,在拋物線的對稱軸上找一點(diǎn)T,使|TM-TF|達(dá)到最大,并求出最大值.(請?jiān)趫D2中作出點(diǎn)T)

          【答案】分析:(1)連接MA,分別求得OC、OM、MC、MA后即可得到點(diǎn)A、B、C的坐標(biāo);
          (2)將點(diǎn)A的坐標(biāo)代入拋物線的解析式,并表示出其對稱軸,根據(jù)切線的性質(zhì)得到a的值即可;
          (3)①利用兩角的正切值相等可以得到兩個(gè)角相等,并利用BD⊥AB得到-2+=4并求得a的值即可;
          ②由對稱性知拋物線與x軸的另一個(gè)交點(diǎn)F的坐標(biāo)是(12,0),再由對稱性,TF=TA,則|TM-TF|=|TM-TA|≤MA,因此,當(dāng)點(diǎn)T是MA的延長線與對稱軸的交點(diǎn)時(shí),|TM-TF|達(dá)到最大,最大值是5;據(jù)此可以求得點(diǎn)T的坐標(biāo).
          解答:解:(1)連接MA,
          ∵拋物線y=ax2+(4a-2)x-8(a≠0)經(jīng)過A、C兩點(diǎn);
          ∴x=0時(shí),y=-8,則C點(diǎn)坐標(biāo)為:(0,-8),
          ∵M(jìn)(0,-3),
          ∴OM=3,
          ∴MC=8-3=5,
          則MA==5,
          ∴OA=OB=4,
          ∴點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo)分別是(-4,0)、(4,0)、(0,-8),

          (2)∵拋物線y=ax2+(4a-2)x-8(a≠0),
          ∴它的對稱軸是直線:x=-=-2+;
          要使拋物線的對稱軸與⊙M相切,則-2+=±5,
          當(dāng)a=或a=-時(shí),拋物線的對稱軸與⊙M相切;

          (3)①在Rt△BOC中,tan∠BCO==,
          又∵tan∠CBD=
          ∴∠BCO=∠CBD,
          ∴BD∥OC,
          又∵OC⊥AB,
          ∴BD⊥AB,
          即得:-2+=4,
          ∴a=;
          ②如圖,由對稱性,此時(shí),拋物線與x軸的另一個(gè)交點(diǎn)F的坐標(biāo)是(12,0),
          由三角形的兩邊之差小于第三邊的性質(zhì)可知:|TM-TF|≤MF,要使|TM-TF|達(dá)到最大,
          則點(diǎn)T應(yīng)在線段MF的延長線,但不可能同時(shí)在拋物線的對稱軸上,
          故達(dá)不到最大值是線段MF的長;
          而由對稱性,TF=TA,則|TM-TF|=|TM-TA|≤MA,
          因此,當(dāng)點(diǎn)T是MA的延長線與對稱軸的交點(diǎn)時(shí),|TM-TF|達(dá)到最大,最大值是5;
          ∵BD∥OC,又OA=OB,
          ∴BT=6,
          ∴點(diǎn)T的坐標(biāo)是(4,-6);[也可求出MA所在直線的一次函數(shù),再求點(diǎn)T坐標(biāo)]
          點(diǎn)評:此題主要考查了二次函數(shù)的綜合題,其中涉及到的知識點(diǎn)有拋物線的對稱軸公式和三角函數(shù)關(guān)系等知識,利用三角形三邊關(guān)系得出|TM-TF|是解題關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點(diǎn)A′的坐標(biāo),記作
          (2,2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,將一塊腰長為2
          2
          cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
          (1)點(diǎn)A的坐標(biāo)為
          (-3,2
          2
          (-3,2
          2
          ,點(diǎn)B的坐為
          (-3-2
          2
          ,0)
          (-3-2
          2
          ,0)

          (2)求以原點(diǎn)O為頂點(diǎn)且過點(diǎn)A的拋物線的解析式;
          (3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

          學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

          (1)按照這種規(guī)定填寫下表:

          (2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

          (3)請你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明在研究中心對稱問題時(shí)發(fā)現(xiàn):

          如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

          如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對稱.

          (1)請?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;

          (2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
          (1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點(diǎn)A′的坐標(biāo),記作______.

          查看答案和解析>>

          同步練習(xí)冊答案