日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,兩個30°的角BAC與角MON,頂點A在射線ON上某處,現(xiàn)保持角MON不動,將角BAC繞點A以每秒15°的速度順時針旋轉(zhuǎn),邊AB、AC分別與邊OM交于點PQ,當(dāng)ACOM時,交點Q消失旋轉(zhuǎn)結(jié)束。設(shè)運動時間為t秒(t>0.

          1)當(dāng)t=2秒時,OP:PQ= ;

          2)在運動的過程中,APQ能否成為等腰三角形?若能,請利用備用圖,直接寫出此時的運動時間;

          3)在(2)中判斷OAQ的形狀,并選擇其中的一個說明理由.

          【答案】12:1;

          2)當(dāng)t=3s6s時,APQ為等腰三角形;

          3△OAQ為等腰三角形,理由見解析.

          【解析】

          1)當(dāng)t=2秒時,∠PAO=30°,∠PQA=90°,根據(jù)等角對等邊定理和30度角所對直角邊等于斜邊的一半可得出結(jié)論;

          2)先求出t的取值范圍,然后分三種情況討論,當(dāng)APQ為等腰三角形時∠PAO的大小,并進而得到t的值;

          3)由(2)得到t的值,代入求得OAQ的內(nèi)角度數(shù),從而判斷OAQ的形狀。

          解:(1)如圖1,

          當(dāng)t=2秒時,∠PAO=30°,

          ∵∠MON=BAC=30°

          ∴∠PAO=MON, PQA=90°,

          OP=AP,PQ=AP

          OP:PQ= 2:1;

          故答案為:2:1;

          2)當(dāng)ACOM時,∠NAC=O=,

          ∴∠OAB=

          t=

          0t8

          分三種情況: AP=AQ 、AP=PQQP=QA

          ①當(dāng)AP=AQ時,

          APQ=AQP=

          ∴∠PAO=APQ-O=

          t=;

          ②當(dāng)AP=PQ時,

          APQ=

          ∴∠PAO=APQ-O=

          t=;

          ③當(dāng)QP=QA時,

          APQ=PAQ=

          ∴∠PAO=APQ-O=

          t=0s(舍去)

          綜上所述,當(dāng)t=3s6s時,APQ為等腰三角形;

          3)當(dāng)t=3s6s時,OAQ為等腰三角形,

          理由是:

          當(dāng)t=3s時,∠OAP=45°,∠PAQ=30°,

          ∴∠OAQ=75°

          又∠AQP=75°,

          OA=OQ,APQ為等腰三角形.

          當(dāng)t=6s時,∠OAP=90°,∠PAQ=30°

          ∴∠OAQ=120°,

          又∠AOQ=30°,

          ∴∠OQA=30°

          OA=AQ,APQ為等腰三角形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】10分)如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A0,4),B1,0),C5,0),其對稱軸與x軸交于點M

          1)求此拋物線的解析式和對稱軸;

          2)在此拋物線的對稱軸上是否存在一點P,使△PAB的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由;

          3)連接AC,在直線AC下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4). 點 出發(fā)以每秒2個單位長度的速度向運動;點同時出發(fā),以每秒1個單位長度的速度向運動.其中一個動點到達(dá)終點時,另一個動點也隨之停止運動.過點垂直軸于點,連結(jié)AC交NP于Q,連結(jié)MQ.

          【1】 (填M或N)能到達(dá)終點;

          【1】求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當(dāng)t為何值時,S的值最大;

          【1】是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標(biāo),若不存在,

          說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點A在雙曲線y=上,點B在雙曲線y=(k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k的值為( )

          A. 6 B. 9 C. 10 D. 12

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,ABC是等邊三角形,如圖①,點DE分別在射線BA、BC上,且AD=CE,求證:BDE是等邊三角形;

          2)如圖②,點DBA邊上,點E在射線BC上,AD=CE,連接DEAC于點F,請問DFEF的數(shù)量關(guān)系是什么?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=kx-1(x>0)的圖象交矩形OABC的邊AB于點D,交邊BC于點E,且BE=2EC.若四邊形ODBE的面積為6,則k=_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】曲阜限制三小車輛出行后,為方便市民出行,準(zhǔn)備為、、、四個村建一個公交車站.

          1)請問:公交站建在何處才能使它到4個村的距離之和最小,請在圖一中找出點;

          2)請問:公交站建在何處才能使它到道路、的距離相等,請在圖二中找出點并加以說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)閱讀理解:

          如圖①,在ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

          解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;

          (2)問題解決: 如圖②,在ABC,DBC邊上的中點,DEDF于點D,DEAB于點E,DFAC于點F,連接EF,求證:BE+CFEF;

          (3)問題拓展:如圖③,在四邊形ABCD,B+D=180°,CB=CD,C為頂點作∠ECF,使得角的兩邊分別交AB,ADE、F兩點,連接EF,EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一列數(shù):1,-23,-4,5,-6,7…將這列數(shù)排成下列形式:

          1行 1

          2行。2 3

          3行。4 5。6

          4行 7 -8 9。10

          5行 11。12 13。14 15

          ……

          按照上述規(guī)律排列下去,則第50行的最后一個數(shù)是___________,2019這個數(shù)在第___行,從左往右是第_____個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案