日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,如圖△ABC中,∠C=90°,AD平分∠BAC,CD=,BD=2,求平分線AD的長,AB,AC的長,外接圓的面積,內(nèi)切圓的面積.

          【答案】分析:首先設(shè)AC的長為x,過D作DE垂直AB于點E.根據(jù)角平分線的性質(zhì)定理及相似三角形的性質(zhì),可得到關(guān)系式4x2=27+x2,解得x即為AC的長,再利用勾股定理求得AB、AD的長.根據(jù)直角三角形內(nèi)切圓的性質(zhì)、外接圓的性質(zhì),求得其半徑,根據(jù)圓的面積計算公式即可求出結(jié)果.
          解答:解:設(shè)AC的長為x,過D作DE垂直AB于點E,
          則BC=BD+DC=,AB===,
          ∵AD平分∠BAC,DC⊥AC,DE⊥AB,
          ∴DC=DE,
          ∵Rt△BED∽Rt△BCA,
          ,
          ?4x2=27+x2
          解得x=3或x=-3(不合題意舍去),
          AD===,
          ∴AB==6,
          顯然可知AB為Rt△ABC的外接圓的直徑,
          ∴Rt△ABC外接圓的面積=π•32=9π,
          Rt△ABC內(nèi)切圓的半徑===
          Rt△ABC內(nèi)切圓的面積==(9-)π.
          答:平分線AD的長為,AB的長為6,AC的長3,外接圓的面積為9π,內(nèi)切圓的面積是(9-)π.
          點評:本題考查三角形內(nèi)切圓與內(nèi)心、勾股定理、角平分線的性質(zhì)、三角形外接圓與外心、相似三角形的性質(zhì).解決本題的關(guān)鍵是首先設(shè)AC為x,通過作輔助線DE建立起邊間的關(guān)系,列出關(guān)系式4x2=27+x2,使問題得解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知,如圖△ABC中,AD為△ABC的角平分線,求證:AB•DC=AC•BD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1998•河北)已知:如圖△ABC中,∠A的平分線AD交BC于D,⊙O過點A,且與BC相切于D,與AB、AC分別相交于E、F,AD與EF相交于G.
          (1)求證:AF•FC=GF•DC;
          (2)已知AC=6cm,DC=2cm,求FC、GF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖△ABC中,∠ACB=90°,D是AC上任意一點,DE⊥AB于E,M,N分別是BD,CE的中點,求證:MN⊥CE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖△ABC中,AB=AC,CD⊥AD于D,CD=
          12
          BC,D在△ABC外,求證:∠ACD=∠B.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖△ABC中,D、E、F分別是三角形三邊中點,△ABC的周長為30,面積為48,則△DEF的周長為
          15
          15
          ,面積為
          12
          12

          查看答案和解析>>

          同步練習(xí)冊答案