日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,點(diǎn)DBC邊的中點(diǎn),以D為頂點(diǎn)的∠EDF的兩邊分別與AB、AC交于點(diǎn)E、F,且∠EDF與∠A互補(bǔ).

          (1)如圖①,若AB=AC,且∠A=90°,證明:DE=DF;

          (2)如圖②,若AB=AC,那么(1)中的結(jié)論是否成立?請(qǐng)說明理由.

          (3)如圖③,若,探索線段DEDF的數(shù)量關(guān)系,并證明你的結(jié)論.

          【答案】(1)見解析;(2)成立,理由見解析;(3),理由見解析

          【解析】分析:(1)首先根據(jù)等腰三角形的性質(zhì)可得∠DAB=DAC=BAC,ADBC,再證明∠C=B=45°,ADE=FDC,AD=DC可以利用ASA定理證明AED≌△CFD,進(jìn)而得到DE=DF;

          (2)DE=DF依然成立.如圖2,過點(diǎn)DDMABM,作DNACN,連接AD,則∠EMD=FND=90°,由于AB=AC,點(diǎn)DBC中點(diǎn),根據(jù)三角形的性質(zhì)三線合一得到AD平分∠BAC,于是得到DM=DN,在四邊形AMDN中.,∠DMA=DNA=90°,得到∠MAN+MDN=180°,又由于∠EDF與∠MAN互補(bǔ),證得∠MDN=EDF,推出DEM≌△DFN(ASA),即可得到結(jié)論;

          (3)結(jié)論DE:DF=n:m.如圖3,過點(diǎn)DDMABM,作DNACN,連接AD同(2)可證∠1=2,通過DEM∽△DFN,得到.由于點(diǎn)EAC的中點(diǎn),得到SABD=SADC,列等積式即可得到結(jié)論.

          詳解:(1)DF=DE,

          理由:如圖1,連接AD,

          RtABC是等腰三角形,

          ∴∠C=B=45°,

          D是斜邊BC的中點(diǎn),

          ∴∠DAB=DAC=BAC=45°,ADBC,

          AD=DC,

          ∵∠EDF=90°,

          ∴∠ADF+ADE=90°,

          ADBC,

          ∴∠ADC=90°,

          ∴∠ADF+FDC=90°,

          ∴∠ADE=FDC,

          ADECDF中,

          ,

          ∴△AED≌△CFD(ASA);

          DE=DF;

          (2)DE=DF依然成立.

          如圖2,過點(diǎn)DDMABM,作DNACN,連接AD,

          則∠EMD=FND=90°,

          AB=AC,點(diǎn)DBC中點(diǎn),

          AD平分∠BAC,

          DM=DN,

          ∵在四邊形AMDN中.,∠DMA=DNA=90°,

          ∴∠MAN+MDN=180°,

          又∵∠EDF與∠MAN互補(bǔ),

          ∴∠MDN=EDF,

          ∴∠1=2,

          DEMDFN中,

          ∴△DEM≌△DFN(ASA),

          DE=DF.

          (3)結(jié)論DE:DF=n:m.

          如圖3,過點(diǎn)DDMABM,作DNACN,連接AD,

          同(2)可證∠1=2,

          又∵∠EMD=FND=90°,

          ∴△DEM∽△DFN,

          ∵點(diǎn)DBC邊的中點(diǎn),

          SABD=SADC

          ,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】發(fā)現(xiàn)問題、探索規(guī)律,要有一雙敏銳的雙眼,下面的圖形是由邊長(zhǎng)為1的小正方形按照某種規(guī)律排列而成的.

          1)觀察圖形,填寫下表:

          圖形個(gè)數(shù)(n

          1

          2

          3

          正方形的個(gè)數(shù)

          8

             

             

          圖形的周長(zhǎng)

          18

             

             

          2)推測(cè)第n個(gè)圖形中,正方形有   個(gè),周長(zhǎng)為   

          3)寫出第30個(gè)圖形的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BCx軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),EAD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過點(diǎn)C和點(diǎn)E,過點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.

          (1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);

          (2)求直線BF的解析式;

          (3)直接寫出y1>y2時(shí),自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法中:

          0是最小的整數(shù);

          有理數(shù)不是正數(shù)就是負(fù)數(shù);

          正整數(shù)、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù);

          非負(fù)數(shù)就是正數(shù);

          不僅是有理數(shù),而且是分?jǐn)?shù);

          是無限不循環(huán)小數(shù),所以不是有理數(shù);

          無限小數(shù)不都是有理數(shù);

          正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).

          其中錯(cuò)誤的說法的個(gè)數(shù)為( 。

          A.7個(gè)B.6個(gè)C.5個(gè)D.4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)老師布置了一道思考題“計(jì)算:(-)÷()”,小明仔細(xì)思考了一番,用了一種不同的方法解決了這個(gè)問題.

          小明的解法:原式的倒數(shù)為()÷()=()×(-12)=-4+10=6,所以(-)÷()=

          (1)請(qǐng)你判斷小明的解答是否正確,并說明理由.

          (2)請(qǐng)你運(yùn)用小明的解法解答下面的問題.

          計(jì)算:(-)÷(+).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長(zhǎng)為半徑作弧,分別交AB,AD于點(diǎn)M,N②分別以M,N為圓心,以大于MN的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)P;③作AP射線,交邊CD于點(diǎn)Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長(zhǎng)為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線ab分別與∠A的兩邊相交,且ab下列各角的度數(shù)關(guān)系正確的是(  )

          A. ∠2+∠5>180° B. ∠2+∠3<180° C. ∠1+∠6>180° D. ∠3+∠4<180°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB=10,P是線段AB上的動(dòng)點(diǎn),分別以AP、PB為邊在線段AB的同側(cè)作等邊△ACP和△PDB,連接CD,設(shè)CD的中點(diǎn)為G,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將長(zhǎng)方形紙片ABCD的∠C沿著GF折疊(點(diǎn)FBC上,不與B,C重合),使點(diǎn)C落在長(zhǎng)方形內(nèi)部的點(diǎn)E處,若FH平分∠BFE,則∠GFH的度數(shù)是( )

          A.110°B.100°C.90°D.80°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案