日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,等腰梯形ABCD中,AD∥BC,M、N分別是AD、BC的中點,E、F分別是BM、CM的中點.
          (1)在不添加線段的前提下,圖中有哪幾對全等三角形?請直接寫出結(jié)論;
          (2)判斷并證明四邊形MENF是何種特殊的四邊形;
          (3)當(dāng)?shù)妊菪蜛BCD的高h與底邊BC滿足怎樣的數(shù)量關(guān)系時,四邊形MENF是正方形?(直接寫出結(jié)論,不需要證明).
          分析:(1)∵點M是AD的中點,∴AM=MD,由等腰梯形的性質(zhì)知,AB=CD,∠A=∠D,∠ABC=∠DCB
          ∴△AMB≌△DMC;∴BM=CM,∠ABM=∠DCM,∴∠ABC-∠ABM=∠DCB-∠DCM即∠EBN=∠FCN,
          ∵點N是BC的中點,E、F分別是BM、CM的中點,∴BN=NC,∴EN,NF是△BMC的中位線,有EN∥CM,NF∥BM,EN=NF=
          1
          2
          BM,∴△BEN≌△CFN.
          (2)根據(jù)有一組鄰邊相等的平行四邊形是菱形.先證四邊形MENF是平行四邊形,再證EN=NF,即證平行四邊形MENF是菱形.
          (3)由于等腰梯形是軸對稱圖形,對稱軸是MN所在的直線,線段MN是等腰梯形的高,由于正方形的對角線相等,∴當(dāng)EF=MN時,即MN=
          1
          2
          BC,菱形MENF是正方形.
          解答:解:
          (1)△AMB≌△DMC;△BEN≌△CFN.(2分)

          (2)判斷四邊形MENF為菱形;(3分)
          證明:∵ABCD為等腰梯形,
          ∴AB=CD,∠A=∠D,
          又∵M為AD的中點,
          ∴MA=MD.
          ∴△AMB≌△DMC,
          ∴BM=CM;(4分)
          又∵E、F、N分別為BM、CM、BC中點,
          ∴MF=NE=
          1
          2
          MC,ME=NF=
          1
          2
          BM,(或MF∥NE,ME∥NF;)(5分)
          ∴EM=NF=MF=NE;
          ∴四邊形MENF為菱形.(6分)
          (說明:第(2)問判斷四邊形MENF僅為平行四邊形,并正確證明的只給(3分).)

          (3)當(dāng)h=
          1
          2
          BC(或BC=2h或BC=2MN)時,MENF為正方形.(8分)
          點評:本題利用了:
          1、等腰梯形的性質(zhì):底角相等,兩腰相等;
          2、全等三角形的判定和性質(zhì);
          3、三角形中位線的性質(zhì);
          4、一組鄰邊相等的平行四邊形是菱形;
          5、對角線相等的菱形是正方形.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          14、如圖,等腰梯形ABCD中,AB∥CD,∠A=60°,BD平分∠ABC,若梯形ABCD的周長為40cm,則CD的長為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC.
          (1)求證:AB=AD;
          (2)若AD=2,∠C=60°,求等腰梯形ABCD的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2007•昌平區(qū)二模)已知:如圖,等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=4
          3

          (1)求證:AB=AD;
          (2)求△BCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,等腰梯形ABCD中,AD∥BC,AB=CD,對角線BD平分∠ABC,且BD⊥DC,上底AD=3cm.
          (1)求∠ABC的度數(shù); 
          (2)求梯形ABCD的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,等腰梯形ABCD中,AD∥BC,AB=CD,BD平分∠ABC,BD⊥DC,延長BC到E,使CE=AD.
          (1)求證:BD=DE;
          (2)當(dāng)DC=2時,求梯形面積.

          查看答案和解析>>

          同步練習(xí)冊答案