日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,BC為半圓O的直徑,D為半圓上一點(diǎn),過(guò)點(diǎn)D作⊙O的切線AD,作BA⊥DA于點(diǎn)A,BA交半圓于點(diǎn)E,已知BC=10,AD=4,若直線CE與以點(diǎn)O為圓心,r為半徑的圓相切,則r等于( 。
          分析:連接OD,由AD為圓O的切線,得到OD垂直于AD,由BC為圓O的直徑,得到BE垂直于EC,又BA垂直于AD,得到EC與AD平行,利用與平行線中的一條垂直,與另一條也垂直,得到OD垂直于EC,利用垂徑定理得到F為EC的中點(diǎn),由三個(gè)角為直角的四邊形為矩形得到AEFD為矩形,得到AD=EF=4,可得出EC的長(zhǎng),在直角三角形BEC中,由BC與EC的長(zhǎng),利用勾股定理求出BE的長(zhǎng),再由FO為三角形BEC的中位線,利用中位線定理得到OF為BE的一半,求出OF的長(zhǎng),即為所求圓的半徑r.
          解答:解:連接OD,與EC交于F點(diǎn),
          ∵AD為圓O的切線,
          ∴OD⊥AD,
          ∵BC為圓O的直徑,
          ∴∠BEC=90°,
          又BA⊥AD,
          ∴∠A=90°,
          ∴∠BEC=∠A=90°,
          ∴EC∥AD,
          ∴OD⊥EC,
          ∴F為EC的中點(diǎn),即EF=FC,
          ∵∠A=∠AEF=∠ADF=90°,
          ∴四邊形AEFD為矩形,
          ∴EF=AD=4,
          ∴EC=2EF=8,
          在Rt△BEC中,BC=10,EC=8,
          根據(jù)勾股定理得:BE=
          BC2-EC2
          =6,
          ∵F為EF的中點(diǎn),O為BC的中點(diǎn),
          ∴OF為△EBC的中位線,
          ∴OF=
          1
          2
          BE=3,
          則r的值為3.
          故選C
          點(diǎn)評(píng):此題考查了切線的性質(zhì),圓周角定理,勾股定理,矩形的判定與性質(zhì),以及三角形的中位線定理,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知.如圖,BC為半圓O的直徑,F(xiàn)是半圓上異于B、C的一點(diǎn),A是
          BF
          的中點(diǎn),AD⊥BC于點(diǎn)D,BF交精英家教網(wǎng)AD于點(diǎn)E.
          (1)求證:BE•BF=BD•BC;
          (2)試比較線段BD與AE的大小,并說(shuō)明道理.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知如圖,BC為半圓O的直徑,AD⊥BC,垂足為D,過(guò)點(diǎn)B作弦BF交AD于點(diǎn)E,交半圓O于點(diǎn)F,弦AC與BF交于點(diǎn)H,且AE=BE.
          求證:(1)
          AB
          =
          AF
          ;(2)AH•BC=2AB•BE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•安溪縣質(zhì)檢)如圖,BC為半圓O的直徑,D為AC的中點(diǎn),四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)E.
          (1)求證:△ABE∽△DBC;
          (2)若AB=3,BC=5,cos∠ABE=
          2
          5
          5
          ,求ED的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,BC為半圓O的直徑,CA為切線,AB交半圓O于點(diǎn)E,EF⊥BC于點(diǎn)F,連接EC.則圖中與△CEF相似的三角形共有( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案