日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線(xiàn)y=x2+bx與直線(xiàn)y=2x交于點(diǎn)O(0,0),A(a,12).點(diǎn)B是拋物線(xiàn)上O,A之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B分別作x軸、y軸的平行線(xiàn)與直線(xiàn)OA交于點(diǎn)C,E.
          (1)求拋物線(xiàn)的函數(shù)解析式;
          (2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
          (3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求出m,n之間的關(guān)系式.

          【答案】分析:(1)將點(diǎn)A的坐標(biāo)代入直線(xiàn)解析式求出a的值,繼而將點(diǎn)A的坐標(biāo)代入拋物線(xiàn)解析式可得出b的值,繼而得出拋物線(xiàn)解析式;
          (2)根據(jù)點(diǎn)A的坐標(biāo),求出點(diǎn)C的坐標(biāo),將點(diǎn)B的縱坐標(biāo)代入求出點(diǎn)B的橫坐標(biāo),繼而可求出BC的長(zhǎng)度;
          (3)根據(jù)點(diǎn)D的坐標(biāo),可得出點(diǎn)E的坐標(biāo),點(diǎn)C的坐標(biāo),繼而確定點(diǎn)B的坐標(biāo),將點(diǎn)B的坐標(biāo)代入拋物線(xiàn)解析式可求出m,n之間的關(guān)系式.
          解答:解:(1)∵點(diǎn)A(a,12)在直線(xiàn)y=2x上,
          ∴12=2a,
          解得:a=6,
          又∵點(diǎn)A是拋物線(xiàn)y=x2+bx上的一點(diǎn),
          將點(diǎn)A(6,12)代入y=x2+bx,可得b=-1,
          ∴拋物線(xiàn)解析式為y=x2-x.

          (2)∵點(diǎn)C是OA的中點(diǎn),
          ∴點(diǎn)C的坐標(biāo)為(3,6),
          把y=6代入y=x2-x,
          解得:x1=1+,x2=1-(舍去),
          故BC=1+-3=-2.

          (3)∵點(diǎn)A的坐標(biāo)為(6,12),
          ∴直線(xiàn)OA的解析式為:y=2x,
          ∵點(diǎn)D的坐標(biāo)為(m,n),
          ∴點(diǎn)E的坐標(biāo)為(n,n),點(diǎn)C的坐標(biāo)為(m,2m),
          ∴點(diǎn)B的坐標(biāo)為(n,2m),
          把點(diǎn)B(n,2m)代入y=x2-x,可得m=n2-n,
          ∴m、n之間的關(guān)系式為m=n2-n.
          點(diǎn)評(píng):本題考查了二次函數(shù)的綜合,涉及了矩形的性質(zhì)、待定系數(shù)法求二次函數(shù)解析式的知識(shí),解答本題需要同學(xué)們能理解矩形四個(gè)頂點(diǎn)的坐標(biāo)之間的關(guān)系.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線(xiàn)與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
          (1)求拋物線(xiàn)的解析式;
          (2)求直線(xiàn)BC的函數(shù)解析式;
          (3)在拋物線(xiàn)上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
          (4)點(diǎn)Q是直線(xiàn)BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫(xiě)出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=1,且拋物線(xiàn)經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
          (1)求這條拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•衡陽(yáng))如圖,已知拋物線(xiàn)經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱(chēng)軸是x=-1.
          (1)求拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線(xiàn)段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線(xiàn)段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線(xiàn)交線(xiàn)段AB于點(diǎn)N,交拋物線(xiàn)于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
          ①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
          ②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,且拋物線(xiàn)經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
          (1)求這條拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
          (1)求此拋物線(xiàn)的解析式;
          (2)①當(dāng)x的取值范圍滿(mǎn)足條件
          -2<x<0
          -2<x<0
          時(shí),y<-3;
               ②若D(m,y1),E(2,y2)是拋物線(xiàn)上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
          (3)直線(xiàn)x=t平行于y軸,分別交線(xiàn)段AC于點(diǎn)M、交拋物線(xiàn)于點(diǎn)N,求線(xiàn)段MN的長(zhǎng)度的最大值;
          (4)若以?huà)佄锞(xiàn)上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案