【題目】在菱形ABCD中,∠BAD=120°,射線AP位于該菱形外側(cè),點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連接BE、DE,直線DE與直線AP交于F,連接BF,設(shè)∠PAB=α.
(1)依題意補(bǔ)全圖1;
(2)如圖1,如果0°<α<30°,判斷∠ABF與∠ADF的數(shù)量關(guān)系,并證明;
(3)如圖2,如果30°<α<60°,寫(xiě)出判斷線段DE,BF,DF之間數(shù)量關(guān)系的思路;(可以不寫(xiě)出證明過(guò)程)
(4)如果60°<α<90°,直接寫(xiě)出線段DE,BF,DF之間的數(shù)量關(guān)系.
【答案】(1)見(jiàn)解析;(2)∠ABF=∠ADF.見(jiàn)解析;(3)DF=ED﹣BF.見(jiàn)解析;(4)BF=DE+DF.
【解析】
試題分析:(1)根據(jù)題目要求補(bǔ)全圖形即可;
(2)連接AE.由軸對(duì)稱圖形的性質(zhì)可知EA=AB,∠ABF=∠AEF,由菱形的定義可知AB=AD,從而得到AE=AD,由等腰三角形的性質(zhì)可知∠AEF=∠ADF,于是得到∠ABF=∠ADF;
(3)由軸對(duì)稱圖形的性質(zhì)可知EF=BF,然后由DF=ED﹣EF,可知DF=ED﹣BF;
(4)由軸對(duì)稱圖形的性質(zhì)可知EF=BF,然后由EF=ED+DF,可知BF=DE+DF.
解:(1)如圖1所示:
(2)∠ABF=∠ADF.
理由:如圖2所示:連接AE.
∵點(diǎn)B與點(diǎn)E關(guān)于直線PA對(duì)稱,
∴EA=AB,∠ABF=∠AEF.
∵四邊形ABCD為菱形,
∴AB=AD.
∴AE=AD.
∴∠AEF=∠ADF.
∴∠ABF=∠ADF.
(3)DF=ED﹣BF.
理由:如圖3所示:
∵點(diǎn)B與點(diǎn)E關(guān)于PA對(duì)稱,
∴EF=BF.
又∵DF=ED﹣EF,
∴DF=ED﹣BF.
(4)BF=DE+DF.
理由:如圖4所示:
∵點(diǎn)B與點(diǎn)E關(guān)于PA對(duì)稱,
∴EF=BF.
又∵EF=ED+DF,
∴BF=DE+DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的面積是16,它的長(zhǎng)與寬的比為4:1,則該矩形的寬為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫(xiě)出該拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P(m,m)與點(diǎn)Q均在該函數(shù)圖像上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求m的值及點(diǎn)Q 到x軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2﹣2x+3化為y=(x﹣h)2+k的形式,結(jié)果為( )
A.y=(x+1)2+4 B.y=(x﹣1)2+4
C.y=(x+1)2+2 D.y=(x﹣1)2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織了“講文明、守秩序、迎南博”知識(shí)競(jìng)賽活動(dòng),從中抽取了7名同學(xué)的參賽成績(jī)?nèi)缦?單位:分):80,90,70,100,60,80,80.則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )
A. 90,80 B. 70,80 C. 80,80 D. 100,80
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,BA平分∠CBF,過(guò)點(diǎn)A作AD⊥BF,垂足為D.
(1)求證:AD為⊙O的切線;
(2)若BD=1,tan∠BAD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)定義運(yùn)算“★”,對(duì)于任意實(shí)數(shù)a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,則實(shí)數(shù)x的值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com