日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知反比例函數(shù) (k≠0)的圖象過(guò)點(diǎn)A(﹣3,2).

          (1)求這個(gè)反比例函數(shù)的解析式;
          (2)若B(x1 , y1),C(x2 , y2),D(x3 , y3)是這個(gè)反比例函數(shù)圖象上的三個(gè)點(diǎn),若x1>x2>0>x3 , 請(qǐng)比較y1 , y2 , y3的大小,并說(shuō)明理由.

          【答案】
          (1)

          解:將點(diǎn)A(﹣3,2)代入 y = k x (k≠0),求得k=﹣6,即 y = 6 x


          (2)

          解:∵k=﹣6<0,

          ∴圖象在二、四象限內(nèi),在每一象限內(nèi),y隨x的增大而增大,

          ∵x1>x2>0>x3

          ∴點(diǎn)B、C在第四象限,點(diǎn)D在第二象限,

          即y1<0,y2<0,y3>0,

          ∴y3>y1>y2


          【解析】(1)直接把點(diǎn)(﹣3,2)代入正比例函數(shù)y= (k≠0),即可得到結(jié)論;(2)根據(jù)(1)中的函數(shù)解析式判斷出函數(shù)的增減性,再根據(jù)x1>x2>0>x3 , 即可得出結(jié)論.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

          (1)將△ABC沿x軸方向向左平移6個(gè)單位,畫(huà)出平移后得到的△A1B1C1;
          (2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2 , 并直接寫(xiě)出點(diǎn)B2、C2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°AO是△ABC的角平分線(xiàn).以O(shè)為圓心,OC為半徑作⊙O.

          (1)求證:AB是⊙O的切線(xiàn).
          (2)已知AO角⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD= ,求 的值.
          (3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】大明因急事在運(yùn)行中的自動(dòng)扶梯上行走去二樓(如圖1),圖2中線(xiàn)段OA、OB分別表示大明在運(yùn)行中的自動(dòng)扶梯上行走去二樓和靜止站在運(yùn)行中的自動(dòng)扶梯上去二樓時(shí),距自動(dòng)扶梯起點(diǎn)的距離與時(shí)間之間的關(guān)系.下面四個(gè)圖中,虛線(xiàn)OC能大致表示大明在停止運(yùn)行(即靜止)的自動(dòng)扶梯上行走去二樓時(shí),距自動(dòng)扶梯起點(diǎn)的距離與時(shí)間關(guān)系的是( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】操作:小明準(zhǔn)備制作棱長(zhǎng)為1cm的正方體紙盒,現(xiàn)選用一些廢棄的紙片進(jìn)行如下設(shè)計(jì):
          說(shuō)明:
          方案一:圖形中的圓過(guò)點(diǎn)A、B、C;
          方案二:直角三角形的兩直角邊與展開(kāi)圖左下角的正方形邊重合,斜邊經(jīng)過(guò)兩個(gè)正方形的頂點(diǎn)
          紙片利用率= ×100%
          發(fā)現(xiàn):

          (1)方案一中的點(diǎn)A、B恰好為該圓一直徑的兩個(gè)端點(diǎn).你認(rèn)為小明的這個(gè)發(fā)現(xiàn)是否正確,請(qǐng)說(shuō)明理由.
          (2)小明通過(guò)計(jì)算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.請(qǐng)幫忙計(jì)算方案二的利用率,并寫(xiě)出求解過(guò)程.
          探究:
          (3)小明感覺(jué)上面兩個(gè)方案的利用率均偏低,又進(jìn)行了新的設(shè)計(jì)(方案三),請(qǐng)直接寫(xiě)出方案三的利用率.
          說(shuō)明:方案三中的每條邊均過(guò)其中兩個(gè)正方形的頂點(diǎn).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)AB和拋物線(xiàn)交于點(diǎn)A(﹣4,0),B(0,4),且點(diǎn)B是拋物線(xiàn)的頂點(diǎn).

          (1)求直線(xiàn)AB和拋物線(xiàn)的解析式.
          (2)點(diǎn)P是直線(xiàn)上方拋物線(xiàn)上的一點(diǎn),求當(dāng)△PAB面積最大時(shí)點(diǎn)P的坐標(biāo).
          (3)M是直線(xiàn)AB上一動(dòng)點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)C:y=﹣x2+bx+c經(jīng)過(guò)A(﹣3,0)和B(0,3)兩點(diǎn),將這條拋物線(xiàn)的頂點(diǎn)記為M,它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為N.
          (1)求拋物線(xiàn)C的表達(dá)式;
          (2)求點(diǎn)M的坐標(biāo);
          (3)將拋物線(xiàn)C平移到拋物線(xiàn)C′,拋物線(xiàn)C′的頂點(diǎn)記為M′,它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為N′.如果以點(diǎn)M、N、M′、N′為頂點(diǎn)的四邊形是面積為16的平行四邊形,那么應(yīng)將拋物線(xiàn)C怎樣平移?為什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,∠C=90°,AC=BC=2 ,D是AB的中點(diǎn),點(diǎn)E、F分別在A(yíng)C、BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A、C重合),且保持AE=CF,連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①△DFE是等腰直角三角形;②四邊形CEDF的周長(zhǎng)不變;③點(diǎn)C到線(xiàn)段EF的最大距離為1.其中正確的結(jié)論有 . (填寫(xiě)所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在⊙O外,做直線(xiàn)AE,且∠EAC=∠D
          (1)求證:直線(xiàn)AE是⊙O的切線(xiàn).
          (2)若∠BAC=30°,BC=4,cos∠BAD= ,CF= ,求BF的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案