日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如果y=y1+y2,其中y1與x成正比例,y2與x-2成反比例,且x=1時,y=-1;x=3時,y=5,那么y的解析式為


          1. A.
            數(shù)學(xué)公式
          2. B.
            數(shù)學(xué)公式
          3. C.
            數(shù)學(xué)公式
          4. D.
            數(shù)學(xué)公式
          B
          分析:根據(jù)y1與x成正比例,y2與x-2成反比例,則可以設(shè)y1=mx,y2=,則y=mx+,然后把x=1時,y=-1;x=3時,y=5代入即可得到一個關(guān)于m,n的方程組,求得m,n,得到解析式.
          解答:∵y1與x成正比例,y2與x-2成反比例,
          ∴設(shè)y1=mx,y2=,則y=mx+

          解得:,
          則y的解析式為:y=x+
          故選B.
          點評:此題比較簡單,考查的是用待定系數(shù)法求反比例函數(shù)的解析式,是中學(xué)階段的重點
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          材料一:在平面直角坐標(biāo)系中,如果已知A,B兩點的坐標(biāo)為(x1,y1)和(x2,y2),設(shè)AB=t,那么我們可以通過構(gòu)造直角三角形用勾股定理得出結(jié)論:(x1-x22+(y1-y22=t2
          材料二:根據(jù)圓的定義,圓是到定點的距離等于定長的所有點的集合(其中定點為圓心,定長為半徑).如果把圓放在平面直角坐標(biāo)系中,我們設(shè)圓心坐標(biāo)為(a,b),半徑為r,圓上任意一點的坐標(biāo)為(x,y),那么我們可以根據(jù)材料一的結(jié)論得出:(x-a)2+(y-b)2=r2,這個二元二次方程我們把它定義為圓的方程.比如:以點(3,4)為圓心,4為半徑的圓,我們可以用方程(x-3)2+(y-4)2=42來表示.事實上,滿足這個方程的任意一個坐標(biāo)(x,y),都在已知圓上.
          認(rèn)真閱讀以上兩則材料,回答下列問題:
          (1)方程(x-7)2+(y-8)2=81表示的是以
          (7,8)
          (7,8)
          為圓心,
          9
          9
          為半徑的圓的方程.
          (2)方程x2+y2-2x+2y+1=0表示的是以
          (1,-1)
          (1,-1)
          為圓心,
          1
          1
          為半徑的圓的方程; 猜想:若方程x2+y2+Dx+Ey+F=0(其中D,E,F(xiàn)為常數(shù))表示的是一個圓的方程,則D,E,F(xiàn)要滿足的條件是
          D2+E2-4F>0
          D2+E2-4F>0

          (3)方程x2+y2=4所表示的圓上的所有點到點(3,4)的最小距離是
          3
          3
          (直接寫出結(jié)果).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,平面直角坐標(biāo)系中,四邊形AOBC為平行四邊形,y1=k1x+b與雙曲線y2=
          k2x
          (x>0)交于點A(1,3)和點E(3,m).
          (1)求k1,k2和b的值;
          (2)直接寫出y1-y2<0時x的取值范圍;
          (3)如果平行四邊形AOBC的對角線OC交雙曲線于點P,求點P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如果y=y1+y2,其中y1與x成正比例,y2與x-2成反比例,且x=1時,y=-1;x=3時,y=5,那么y的解析式為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如果y=y1+y2,其中y1與x成正比例,y2與x-2成反比例,且x=1時,y=-1;x=3時,y=5,那么y的解析式為( 。
          A.y=x-
          2
          x-2
          B.y=x+
          2
          x-2
          C.y=x+
          2
          x+2
          D.y=-x-
          2
          x-2

          查看答案和解析>>

          同步練習(xí)冊答案