【題目】如圖,在梯形ABCD中,AD∥BC,AD=6cm,CD=8cm,BC=BD=10cm,點(diǎn)P由B出發(fā)沿BD方向勻速運(yùn)動,速度為
1cm/s;同時,線段EF由DC出發(fā)沿DA方向勻速運(yùn)動,速度為1cm/s,交BD于Q,連接PE.若設(shè)運(yùn)動時間為t(s)(0<t<5).解答下列問題:
(1)當(dāng)t為何值時,PE∥AB?
(2)是否存在某一時刻t,使S△DEQ=?若存在,求出此時t的值;若不存在,說明理由.
(3)如圖2連接PF,在上述運(yùn)動過程中,五邊形PFCDE的面積是否發(fā)生變化?說明理由.
【答案】(1)當(dāng)t=(s)時,PE∥AB;(2)當(dāng)t=2時,S△DEQ=
;(3)在運(yùn)動過程中,五邊形PFCDE的面積不變.
【解析】
試題分析:(1)若要PE∥AB,則應(yīng)有,故用t表示DE和DP后,代入上式求得t的值;
(3)利用S△DEQ=建立方程,求得t的值;
(4)易得△PDE≌△FBP,故有S五邊形PFCDE=S△PDE+S四邊形PFCD=S△FBP+S四邊形PFCD=S△BCD,即五邊形的面積不變.
解:(1)據(jù)題意得DE=BP=t,則DP=10﹣t,
∵PE∥AB,
∴,
∴,
∴t=,
∴當(dāng)t=(s)時,PE∥AB;
(2)存在,
∵DE∥BC,
∴△DEQ∽△BCD,
∴=(
)2,
∵S△DEQ=,
∴=(
)2=
,
∴()2=
,
∴t2=×100=4;
t1=2,t2=﹣2(不合題意舍去),
∴當(dāng)t=2時,S△DEQ=;
(3)不變.過B作BM⊥CD,交CD于M
∴S△BCD=BM=
=8
,
在△PDE和△FBP中,,
∴△PDE≌△FBP,
∴S五邊形PFCDE=S△PDE+S四邊形PFCD=S△FBP+S四邊形PFCD=S△BCD=8,
∴在運(yùn)動過程中,五邊形PFCDE的面積不變.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若m=2125,n=375,則m、n的大小關(guān)系正確的是( )
A. m>n B. m<n C. m=n D. 大小關(guān)系無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系(如圖)中,拋物線
經(jīng)過點(diǎn)
、點(diǎn)
,點(diǎn)
與點(diǎn)
關(guān)于這條拋物線的對稱軸對稱;
(1)求配方法求這條拋物線的頂點(diǎn)坐標(biāo);
(2)聯(lián)結(jié)、
,求
的正弦值;
(3)點(diǎn)是這條拋物線上的一個動點(diǎn),設(shè)點(diǎn)
的橫坐標(biāo)為
(
),過點(diǎn)
作
軸的垂線
,垂足為
,如果
,求
的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=5米,AC=12米.M點(diǎn)在線段CA上,從C向A運(yùn)動,速度為1米/秒;同時N點(diǎn)在線段AB上,從A向B運(yùn)動,速度為2米/秒.運(yùn)動時間為t秒.
(1)當(dāng)t為何值時,∠AMN=∠ANM?
(2)當(dāng)t為何值時,△AMN的面積最大?并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在x軸上,且點(diǎn)A到y軸的距離為4,則點(diǎn)A的坐標(biāo)為( )
A. (4,0) B. (0,4) C. (4,0)或(-4,0) D. (0,4)或(0,-4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com