日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,直線y=x+3與兩坐標軸交于A,B兩點,拋物線y=﹣x2+bx+cA、B兩點,且交x軸的正半軸于點C.

          (1)直接寫出A、B兩點的坐標;

          (2)求拋物線的解析式和頂點D的坐標;

          (3)在拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由.

          【答案】(1)B(0,3),A(﹣3,0);(2)拋物線解析式為:y=﹣x2﹣2x+3;頂點D坐標為(﹣1,4);(3)存在,符合條件的點P的坐標為(﹣1,4)或(2,﹣5).

          【解析】試題分析:(1分別令x=0y=0代入y=x+3中可得結論;

          2)利用待定系數法求二次函數的解析式,根據配方法可得頂點D的坐標

          3)分兩種情況設點P的坐標為(t,﹣t22t+3).根據兩點距離公式可得AB2=32+32=18,AP2=(t+32+(﹣t22t+32,BP2=t2+(﹣t22t2

          ①如圖1,如果點B為直角頂點,那么AB2+BP2=AP2

          ②如圖2,如果點A為直角頂點,那么AP2+AB2=BP2,列方程可得結論.

          試題解析:(1)當x=0y=3B0,3),y=0,x+3=0x=﹣3,A(﹣30);

          2)把A(﹣30),B03)分別代入y=﹣x2+bx+c

          ,解得 ∴拋物線解析式為y=﹣x22x+3;

          頂點D坐標為(﹣1,4

          3)存在.

          設點P的坐標為(t,﹣t22t+3).

          A(﹣3,0),B0,3),AB2=32+32=18,AP2=(t+32+(﹣t22t+32,BP2=t2+(﹣t22t2

          當△PAB是以AB為直角邊的直角三角形時,可分兩種情況

          ①如圖1,如果點B為直角頂點那么AB2+BP2=AP2

          (事實這里的點P與點D 重合)

          18+t2+(﹣t22t2=(t+32+(﹣t22t+32,整理得t2+t=0,解得t1=﹣1t2=0(不合題意舍去),則點P的坐標為(﹣14);

          ②如圖2,如果點A為直角頂點那么AP2+AB2=BP2,18+t+32+(﹣t22t+32=t2+(﹣t22t2,整理得t2+t6=0解得t1=2,t2=﹣3(不合題意舍去),則點P的坐標為(2,﹣5);

          綜上所述所有符合條件的點P的坐標為(﹣14)或(2,﹣5).

          另解如圖3DEy軸于點E,發(fā)現∠ABO=DBE=45°

          可知頂點D滿足△DAB是直角三角形這時點P的坐標為(﹣1,4);

          PAAB交拋物線于點P,PFx軸于點F,發(fā)現∠PAF=APF=45°,PF=AF求出另一點P為(2,﹣5).

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】為鼓勵節(jié)約用水,某地推行階梯式水價計費制,標準如下:每月用水不超過17立方米的按每立方米元計費,超過17立方米而未超過30立方米的部分按每立方米元計費,超過30立方米的部分按每立方米元計費,某戶居民上月用水35立方米,應繳水費_________.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】數學問題:計算等差數列5,2,﹣1,﹣4……前n項的和.

          問題探究:為解決上面的問題,我們從最簡單的問題進行探究.

          探究一:首先我們來認識什么是等差數列.

          數學上,稱按一定順序排列的一列數為數列,其中排在第一位的數稱為第1項,用a1表示:排在第二位的數稱為第2項,用a2表示……排在第n位的數稱為第n項,用an表示.一般地,如果一個數列從第二項起,每一項與它的前一項的差都等于同一個常數,那么這個數列叫做等差數列,這個常數叫等差數列的公差,公差通常用字母d表示.如:數列2,4,6,8,….為等差數列,其中a12,公差d2

          1)已知等差數列5,2,﹣1,﹣4,…則這個數列的公差d   ,第5項是   

          2)如果一個數列a1a2,a3a4,…是等差數列,且公差為d,那么根據定義可得到:

          a2a1d,a3a2d,a4a3d,……anan1d,所以a2a1+da3a2+da1+2d,a4a1+3d,……:由此可得an   (用a1d的代數式表示)

          3)對于等差數列5,2,﹣1,﹣4,…,an   請判斷﹣2020是否是此等差數列的某一項,若是,請求出是第幾項:若不是,說明理由.

          探究二:二百多年前,數學王子高斯用他獨特的方法快速計算出1+2+3+4++100的值.我們從這個算法中受到啟發(fā),用此方法計算數列1,23,…,n的前n項和: 可知

          4)請你仿照上面的探究方式,解決下面的問題:

          a1,a2a3,…,an為等差數列的前n項,前n項和Sna1+a2+a3++an.證明:Snna1+

          5)計算:計算等差數列5,2,﹣1,﹣4…前n項的和Sn(寫出計算過程).

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某文具店老板第一次用1000元購進一批文具,很快銷售完畢,第二次購進時發(fā)現每件文具的進價比第一次上漲了2.5元,老板用2500元購進了第二批文具,所購進文具的數量是第一次購進數量的2倍,同樣很快銷售完畢,已知兩批文具的售價均為每件15元.

          (1)第二次購進了多少件文具?

          (2)文具店老板在這兩筆生意中共盈利多少元?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某商品的進貨價為每件30元,為了合理定價,先投放市場試銷.據市場調查,銷售價為每件40元時,每周的銷售量是180件,而銷售價每上漲1元,則每周的銷售量就會減少5件,設每件商品的銷售價上漲x元,每周的銷售利潤為y元.

          (1)用含x的代數式表示:每件商品的銷售價為   元,每件商品的利潤為   元,每周的商品銷售量為   件;

          (2)求y關于x的函數關系式(不要求寫出x的取值范圍);

          (3)應怎樣確定銷售價,使該商品的每周銷售利潤最大?最大利潤是多少?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,∠AOB=DOC=90°,OE平分∠AOD,反向延長射線OEF.

          1)∠AOD和∠BOC是否互補?說明理由;

          2)射線OF是∠BOC的平分線嗎?說明理由;

          3)反向延長射線OA至點G,射線OG將∠COF分成了43的兩個角,求∠AOD.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】某學校準備印刷一批證書,現有兩個印刷廠可供選擇:甲廠收費方式:收制版費1000元,每本印刷費0.5元;乙廠收費方式:不收制版費,每本收印刷費1.5元;若該校印制證書x.

          1)當印制證書3000本時,甲廠的收費為 元,乙廠的收費為 元;

          2)請問印刷多少本證書時,甲乙兩廠收費相同?

          3)你認為選擇哪一家印刷廠更優(yōu)惠?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:

          ①4acb2;

          方程 的兩個根是x1=1x2=3;

          ③3a+c0

          y0時,x的取值范圍是﹣1≤x3

          x0時,yx增大而增大

          其中結論正確的個數是( 。

          A. 4 B. 3 C. 2 D. 1

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】為了迎接鄭州市第二屆“市長杯”青少年校園足球超級聯賽,某學校組織了一次體育知識競賽.每班選25名同學參加比賽,成績分別為A、B、C、D四個等級,其中相應等級得分依次記為100分、90分、80分、70分.學校將八年級一班和二班的成績整理并繪制成統(tǒng)計圖,如圖所示.

          (1)把一班競賽成績統(tǒng)計圖補充完整;

          (2)寫出下表中a、b、c的值:

          平均數(分)

          中位數(分)

          眾數(分)

          方差

          一班

          a

          b

          90

          106.24

          二班

          87.6

          80

          c

          138.24

          (3)根據(2)的結果,請你對這次競賽成績的結果進行分析.

          查看答案和解析>>

          同步練習冊答案