日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
          (1)如果∠BPC=90°,求證:△ABP∽△DPC;
          (2)在問題(1)中,當AD=13時,求tan∠PBC;
          (3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

          【答案】分析:(1)若∠BPC=90°,則∠BPA和∠PCD同為∠DPC的余角,故∠BPA=∠PCD,而∠A、∠D都是直角,由此可證得:△ABP∽△DPC.
          (2)由于AD∥BC,則∠PBC=∠APB,那么只需求出∠APB的正切值即可,關(guān)鍵是求AP的長;可設(shè)AP為x,用x可表示出DP的長,根據(jù)(1)所得相似三角形的比例線段,即可求得x即AP的值,進而可得到∠APB的正切值,由此得解.
          (3)易得AB、AD的長,即可得到矩形的長和寬的比例關(guān)系,若設(shè)ME=x,則MN=2ME=2x,可過P作BC的垂線,設(shè)垂足為H,交MN于G;那么PG=6-x,易證得△PMN∽△PBC,根據(jù)相似三角形的對應邊成比例,即可求得x的值,進而可求出MN的長.(當ME=2MN時,方法同上).
          解答:(1)證明:∵∠BPC=90°,∠D=90°,
          ∴∠BPA+∠DPC=∠PCD+∠DPC=90°,
          ∴∠APB=∠PCD;
          又∵∠A=∠D=90°,
          ∴△ABP∽△DPC.

          (2)解:設(shè)AP=x,則PD=AD-AP=13-x;
          由(1)知:△ABP∽△DPC,得:
          ,即,化簡得:
          x2-13x+36=0,解得x=4,x=9;
          在Rt△APB中,當AP=4時,tan∠APB==;
          當AP=9時,tan∠APB===;
          由于AD∥BC,則∠APB=∠PBC,
          故∠PBC的正切值為

          (3)解:過P作PH⊥BC于H,交MN于G,則PG⊥MN;
          由題意知:AB=6,AD=AP+PD=12,即AD=2AB;
          ①當MN=2ME時,設(shè)ME=x,則MN=2x,PG=6-x;
          由于MN∥BC,則△PMN∽△PBC,得:
          ,即
          解得:x=3,故MN=2x=6;
          ②當ME=2MN時,設(shè)MN=m,則ME=2m,PG=6-2m,同①可得:
          ,即;
          解得:m=2.4,即MN=2.4;
          綜上所述,MN的值為6或2.4.
          點評:此題重點考查的是相似三角形的判定和性質(zhì),涉及到的知識點有:矩形的性質(zhì)、銳角三角函數(shù)等知識;本題難度雖然不大,但關(guān)鍵在于(2)(3)題都要把各種情況考慮到,以免漏解.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
          (1)如果∠BPC=90°,求證:△ABP∽△DPC;
          (2)在問題(1)中,當AD=13時,求tan∠PBC;
          (3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
          (1)如果∠BPC=90°,求證:△ABP∽△DPC;
          (2)在問題(1)中,當AD=13時,求tan∠PBC;
          (3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012年江蘇省宿遷市沭陽國際學校中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

          如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
          (1)如果∠BPC=90°,求證:△ABP∽△DPC;
          (2)在問題(1)中,當AD=13時,求tan∠PBC;
          (3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年福建省南平市初中畢業(yè)綜合測試(解析版) 題型:解答題

          (2010•南平模擬)如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
          (1)如果∠BPC=90°,求證:△ABP∽△DPC;
          (2)在問題(1)中,當AD=13時,求tan∠PBC;
          (3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

          查看答案和解析>>

          同步練習冊答案