日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:兩個等腰直角三角形(△ACB和△BED)邊長分別為a和b(a<b)如圖放置在一起,連接AD,
          (1)求陰影部分(△ABD)的面積;
          (2)如果有一個P點正好位于線段CE的中點,連接AP、DP得到△APD,求△APD的面積;
          (3)(2)中的三角形△APD比(1)中的△ABD面積大還是?
          分析:(1)先根據(jù)梯形的定義證明四邊形ACED是梯形,再利用S陰影=S梯形-S△ACB-S△DEB即可求面積;
          (2)利用S△ADP=S梯形-S△ACP-S△DEP可求面積;
          (3)由于a<b,易求(b-a)2>0,即可得
          1
          2
          (a2+b2)>ab,從而易求(
          1
          2
          a+
          1
          2
          b)2>ab,即S△ADP>S△ABD
          解答:精英家教網(wǎng)解:(1)如右圖所示,
          ∵△ACB和△BED是等腰直角三角形,
          ∴∠C=∠E=90°,
          ∴∠C+∠E=180°,
          ∴AC∥DE,
          ∵a<b,
          ∴四邊形ACED是梯形,
          ∴S陰影=S梯形-S△ACB-S△DEB=
          1
          2
          (a+b)(a+b)-
          1
          2
          a2-
          1
          2
          b2=ab;

          (2)同(1)一樣,
          S△ADP=S梯形-S△ACP-S△DEP=
          1
          2
          (a+b)(a+b)-
          1
          2
          ×
          1
          2
          (a+b)•a-
          1
          2
          ×
          1
          2
          (a+b)•b=(
          1
          2
          a+
          1
          2
          b)2;

          (3)S△ADP>S△ABD,
          ∵a<b,
          ∴(b-a)2>0,
          ∴b2+a2>2ab,
          1
          2
          (a2+b2)>ab,
          ∴(
          1
          2
          a+
          1
          2
          b)2=
          1
          2
          1
          2
          a2+ab+
          1
          2
          b2)>ab,
          ∴S△ADP>S△ABD
          點評:本題考查了梯形的判定、三角形的面積公式、梯形的面積公式.關鍵是知道S陰影=S梯形-S△ACB-S△DEB,解題就容易了.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          附加題:(1)如圖,在四個正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個點中任意三點為頂點,共能組成
           
          個等腰直角三角形.
          精英家教網(wǎng)
          (2)已知y1=-ax2-ax+1的頂點P的縱坐標為
          98
          ,且與拋物線y2=ax2-ax-1相交于A,B兩點.設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
          (1)實驗與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關系,為什么?
          (3)拓廣與運用:
          如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
          (1)實驗與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關系,為什么?
          (3)拓廣與運用:
          如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          附加題:(1)如圖,在四個正方形拼接成的圖形中,以A1、A2、A3、…、A10這十個點中任意三點為頂點,共能組成______個等腰直角三角形.

          (2)已知y1=-ax2-ax+1的頂點P的縱坐標為數(shù)學公式,且與拋物線y2=ax2-ax-1相交于A,B兩點.設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011年河北省石家莊市裕華區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

          如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
          (1)實驗與操作:
          如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
          (2)猜想與探究:
          如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
          我們來證明線段CD與線段CN相等.
          ∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
          ∴∠DAC=45°,∴∠DAC=∠CBA,
          又∵DA=NB,BC=AC,
          ∴△CAD≌△CBN.
          ∴CD=CN.

          請你繼續(xù)解答:
          ①線段MD與線段MN相等嗎?為什么?
          ②線段AM、MN、NB有怎樣的數(shù)量關系,為什么?
          (3)拓廣與運用:
          如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

          查看答案和解析>>

          同步練習冊答案