已知矩形紙片ABCD中,AB=2,BC=3.
操作:將矩形紙片沿EF折疊,使點B落在邊CD上.
探究:
(1)如圖1,若點B與點D重合,你認(rèn)為△EDA1和△FDC全等嗎?如果全等,請給出證明,如果不全等,請說明理由;
(2)如圖2,若點B與CD的中點重合,請你判斷△FCB1、△B1DG和△EA1G之間的關(guān)系,如果全等,只需寫出結(jié)果,如果相似,請寫出結(jié)果和相應(yīng)的相似比;
(3)如圖2,請你探索,當(dāng)點B落在CD邊上何處,即B1C的長度為多少時,△FCB1與△B1DG全等.
(1)全等,△ED≌△FDC(ASA)(2)△B1DG和△EA1G全等,△FCB1與△B1DG相似 (3)當(dāng)B1C=
時,△FCB1與△B1DG全等
【解析】
試題分析:(1)全等.
證明:∵四邊形ABCD是矩形,
所以∠A=∠B=∠C=∠ADC=90°,AB=CD,
由題意知:∠A=∠A1,∠B=∠A1DF=90°,CD=A1D,
所以∠=∠C=90°,∠CDF+∠EDF=90°,
所以∠DE=∠CDF,所以△ED
≌△FDC(ASA).
(2)△B1DG和△EA1G全等.
△FCB1與△B1DG相似,設(shè)FC=,則B1F=BF=
,B1C=
DC=1,
所以,所以
,
所以△FCB1與△B1DG相似,相似比為4:3.
(3)△FCB1與△B1DG全等.設(shè),則有
,
,
在直角中,可得
,
整理得,解得
(另一解舍去),
所以,當(dāng)B1C=時,△FCB1與△B1DG全等.
考點:三角形全等和相似
點評:本題考查三角形全等和相似,掌握三角形全等判定方法和相似是本題的關(guān)鍵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com