日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等腰△ABC中,AB=AC,D是BC的中點,將三角板中的90°角的頂點繞D點在△ABC內(nèi)旋轉(zhuǎn),角的兩邊分別與AB、AC交于E、F,且點E、F不與A、B、C三點重合.
          (1)如果∠A=90°,求證:DE=DF;
          (2)如果DF∥AB,則結(jié)論:“四邊形AEDF為直角梯形”是否正確?若正確,請證明;若不正確,請畫出草圖舉反例.
          分析:(1)連接AD,根據(jù)等腰三角形三線合一的性質(zhì)以及直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)可得AD⊥BC,AD=DC,再根據(jù)同角的余角相等求出∠ADE=∠CDF,然后利用“角邊角”證明△ADE和△CDF全等,根據(jù)全等三角形對應(yīng)邊相等即可得證;
          (2)不成立,根據(jù)平行線的性質(zhì)求出∠AED=90°,然后證明四邊形ADEF是矩形,所以不是梯形.
          解答:(1)證明:如圖1,連接AD,∵∠A=90°,AB=AC,D是BC的中點,
          ∴AD⊥BC,AD=DC,
          ∴∠EAD=∠C=45°,
          ∵∠EDF=90°,
          ∴∠ADE+∠ADF=90°,∠CDF+∠ADF=90°,
          ∴∠ADE=∠CDF,
          在△ADE和△CDF中,
          ∠EAD=∠C=45°
          AD=CD
          ∠ADE=∠CDF

          ∴△ADE≌△CDF(ASA),
          ∴DE=DF;

          (2)解:結(jié)論不成立.
          反例如下:如圖2,取∠A=90°時,四邊形ADEF是矩形,不是直角梯形.
          ∵DF∥AB,∠EDF=90°,
          ∴∠AED=180°-90°=90°,
          所以,當(dāng)∠A=90°時,四邊形ADEF是矩形,不是直角梯形.
          點評:本題考查了等腰直角三角形的性質(zhì),等腰三角形三線合一的性質(zhì),全等三角形的判定與性質(zhì),直角梯形的判定,作出輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          24、(1)如圖,△ABC紙片中,∠A=36°,AB=AC,請你剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形.請畫出示意圖,并標(biāo)明必要的角度;
          (2)已知等腰△ABC中,AB=AC,D為BC邊上一點,連接AD,若△ACD與△ABD都是等腰三角形,則∠B的度數(shù)是
          45°或36°
          ;(請畫出示意圖,并標(biāo)明必要的角度)
          (3)現(xiàn)將(1)中的等腰三角形改為△ABC中,∠A=36°,從點B出發(fā)引一直線可分成兩個等腰三角形,則原三角形的最大內(nèi)角的所有可能值是
          72°、108°、90°、126°
          .(直接寫出答案).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          12、如圖:已知等腰△ABC中,腰AB=AC=13cm,底BC=24cm,求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•潛江模擬)已知等腰△ABC中,AD⊥BC于點D,且AD=
          1
          2
          BC,則△ABC底角的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知等腰△ABC中,AB=AC=13,BC=10
          (1)如圖①,△ABC的面積=
          60
          60
          ,腰AC上的高BD=
          120
          13
          120
          13

          (2)如圖②,P是底邊BC上任意一點,PE⊥AB于E,PF⊥AC于F,連接AP,不難發(fā)現(xiàn):△ABP的面積+△ACP的面積=△ABC的面積,據(jù)此式,你能求出PE+PF等于多少嗎?你有什么發(fā)現(xiàn)?
          (3)如圖③四邊形BCGH是形狀、大小一定的等腰梯形,點P是下底BC上一動點,試問:點P到兩腰的距離之和是否為一定值?簡述理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知等腰△ABC中,AB=AC,若AB的垂直平分線與邊AC所在直線相交所得銳角為40°,則等腰△ABC的底角∠B的大小為
          65°或25°
          65°或25°

          查看答案和解析>>

          同步練習(xí)冊答案