日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在一條筆直地公路上有A,B,C三地,,兩地相距150km,甲、乙兩輛汽車分別從B,C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C,B兩地.甲、乙兩車到A地的距離y1y2與行駛時(shí)間x(h)的函數(shù)圖象如圖2所示.(:折線)

          (1)請?jiān)趫D1中標(biāo)出A地的大致位置;

          (2)2,M點(diǎn)的坐標(biāo)是_________,該點(diǎn)的實(shí)際意義是_________;

          (3)求甲車到A地的距離與行駛時(shí)間的函數(shù)關(guān)系式,直接寫出乙車到A地的距離y2與行駛時(shí)間的函數(shù)關(guān)系式,并在圖2中補(bǔ)全甲車的函數(shù)圖象;

          (4)A地設(shè)有指揮中心,指揮中心與兩車配有對講機(jī),兩部對講機(jī)在之15km內(nèi)(15km)時(shí)能夠互相通話,直接寫出兩車可以同時(shí)與指揮中心用對講機(jī)通話的時(shí)間.

          【答案】1)詳見解析;(2)(1.2,0),點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地;(3)甲:0≤x≤1時(shí),y1=-60x+601x≤2.5時(shí),y1=60x-60;乙:0≤x≤1.2時(shí),y2=-75x+901.2x≤2時(shí),y2=75x-90;圖象見解析;(4小時(shí).

          【解析】試題分析: (1)根據(jù)圖象可得AB=60千米,CA=90千米,根據(jù)ABAC=23確定出點(diǎn)A的位置即可;(2)直接根據(jù)題意列式可求,乙車的速度150÷2=75千米/時(shí),90÷75=1.2,所以點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地,由此即可求解;(3)根據(jù)圖象可知圖象上點(diǎn)的坐標(biāo),進(jìn)而利用自變量取值范圍求出函數(shù)關(guān)系式即可;(4)根據(jù)“兩部對講機(jī)在15千米之內(nèi)(含15千米)時(shí)能夠互相通話”作為不等關(guān)系列不等式組,求解即可得到通話的時(shí)間范圍,即可求兩車同時(shí)與指揮中心通話的時(shí)間.

          試題解析:

          (1)A地位置如圖所示.使點(diǎn)A滿足AB:AC=2:3;

          (2)乙車的速度150÷2=75千米/時(shí),

          90÷75=1.2,

          ∴M(1.2,0);

          所以點(diǎn)M表示乙車1.2小時(shí)到達(dá)A地;

          (3)甲車的函數(shù)圖象如圖所示:甲車的速度60÷1=60(千米/時(shí)),

          甲車從BC所用時(shí)間為:150÷60=2.5(小時(shí)),

          將(0,60),(1,0),代入y1=kx+b,

          得: ,

          解得: ,

          故當(dāng)0≤x≤1時(shí),y1=-60x+60;

          將(2.5,90),(1,0),代入y1=ax+c,

          ,

          解得:

          .

          故當(dāng)1<x≤2.5時(shí),y1=60x-60.

          乙車到A地的距離y2與行駛時(shí)間x(h)的函數(shù)關(guān)系式為:

          將(0,90),(1.2,0),代入y2=dx+e,

          ,

          解得: ,

          故當(dāng)0≤x≤1.2時(shí),y2=-75x+90;

          將(2,60),(1.2,0),代入y2=fx+r,

          解得: ,

          故當(dāng)1.2<x≤2時(shí),y2=75x-90;

          如圖所示:

          4)由題意得甲車與指揮中心的通話時(shí)間為: ,

          ≤x≤

          乙車與指揮中心的通話時(shí)間:

          ,

          1≤x≤ ,

          1≤x≤

          故兩車同時(shí)與指揮中心通話的時(shí)間為: -1=小時(shí).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一塊長方體木塊的各棱長如圖所示,一只蜘蛛在木塊的一個(gè)頂點(diǎn)A處,一只蒼蠅在這個(gè)長方體上和蜘蛛相對的頂點(diǎn)B處,蜘蛛急于捉住蒼蠅,沿著長方體的表面向上爬.

          (1)如果D是棱的中點(diǎn),蜘蛛沿“AD→DB”路線爬行,它從A點(diǎn)爬到B點(diǎn)所走的路程為多少?

          (2)你認(rèn)為“AD→DB”是最短路線嗎?如果你認(rèn)為不是,請計(jì)算出最短的路程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:關(guān)于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
          (1)求證:無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;
          (2)若此方程有兩個(gè)實(shí)數(shù)根x1 , x2 , 且|x1﹣x2|=2,求k的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形ABCD的對角線交于點(diǎn)E,有AE=EC,BE=ED,以AB為直徑的半圓過點(diǎn)E,圓心為O.
          (1)利用圖1,求證:四邊形ABCD是菱形.
          (2)如圖2,若CD的延長線與半圓相切于點(diǎn)F,已知直徑AB=8. ①連結(jié)OE,求△OBE的面積.
          ②求扇形AOE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:

          (1) (-4x2y)·(-x2y2)·(y)3; (2) (-3ab)(2a2b+ab-1)

          (3) (m-)(m+); (4) (-x-1)(-x+1) (5) ( - x - 5)2 ; (6)

          (7)先化簡,再求值:(x+1)2﹣(x+2)(x﹣2),其中 ;

          (8)解方程組.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】特值驗(yàn)證:

          當(dāng),0,1,2,5,…時(shí),計(jì)算代數(shù)式的值,分別得到5,2,1,2,17,….當(dāng)x的取值發(fā)生變化時(shí),代數(shù)式的值卻有一個(gè)確定的范圍,通過多次驗(yàn)證可以發(fā)現(xiàn)它的值總大于或等于1,所以1就是它的最小值.

          變式求證:

          我們可以用學(xué)過的知識,對進(jìn)行恒等變形:.(注:這種變形方法可稱為配方”) .所以無論x取何值,代數(shù)式的值不小于1,即最小值為1.

          遷移實(shí)證:

          (1)請你用配方的方法,確定的最小值為3;

          (2)求的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司在兩倉庫分別有機(jī)器16臺和12臺,現(xiàn)要運(yùn)往甲、乙兩地,其中甲地需要15臺,乙地需要13臺,已知兩地倉庫運(yùn)往甲,乙兩地機(jī)器的費(fèi)用如下面的左表所示.

          設(shè)從A倉庫調(diào)x臺機(jī)器去甲地,請用含x的代數(shù)式補(bǔ)全下面的右表;

          機(jī)器調(diào)運(yùn)費(fèi)用表機(jī)器調(diào)運(yùn)方案表

          出發(fā)地

          目的地運(yùn)費(fèi)

          A

          B

          出發(fā)地

          目的地機(jī)器

          A

          B

          合計(jì)

          500

          300

          甲地

          x

          15

          400

          600

          乙地

          13

          合計(jì)

          16

          12

          28

          設(shè)總運(yùn)費(fèi)為y元,求yx之間的函數(shù)解析式,并寫出自變量x的取值范圍;

          由機(jī)器調(diào)運(yùn)方案表可知共有n種調(diào)運(yùn)方案,求n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】杭州休博會期間,嘉年華游樂場投資150萬元引進(jìn)一項(xiàng)大型游樂設(shè)施.若不計(jì)維修保養(yǎng)費(fèi)用,預(yù)計(jì)開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個(gè)月到第x個(gè)月的維修保養(yǎng)費(fèi)用累計(jì)為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用稱為游樂場的純收益g(萬元),g也是關(guān)于x的二次函數(shù);
          (1)若維修保養(yǎng)費(fèi)用第1個(gè)月為2萬元,第2個(gè)月為4萬元.求y關(guān)于x的解析式;
          (2)求純收益g關(guān)于x的解析式;
          (3)問設(shè)施開放幾個(gè)月后,游樂場的純收益達(dá)到最大;幾個(gè)月后,能收回投資?

          查看答案和解析>>

          同步練習(xí)冊答案