日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】ABC中,∠ABC=90°AB=BC=4,點(diǎn)M是線段BC的中點(diǎn),點(diǎn)N在射線MB上,連接AN,平移ABN,使點(diǎn)N移動到點(diǎn)M,得到DEM(點(diǎn)D與點(diǎn)A對應(yīng),點(diǎn)E與點(diǎn)B對應(yīng)),DMAC于點(diǎn)P

          1)若點(diǎn)N是線段MB的中點(diǎn),如圖1

          ①依題意補(bǔ)全圖1;

          ②求DP的長;

          2)若點(diǎn)N在線段MB的延長線上,射線DM與射線AB交于點(diǎn)Q,若MQ=DP,求CE的長.

          【答案】1)①補(bǔ)全的圖形如圖1所示,見解析;②;(2

          【解析】

          1)利用平移的性質(zhì)畫出圖形,再利用相似得出比例,即可求出線段DP的長.

          2)根據(jù)條件MQ=DP,利用平行四邊形的性質(zhì)和相似三角形的性質(zhì),求出BN的長即可解決.

          1)①如圖1,補(bǔ)全圖形

          ②連接AD,如圖1

          RtABN中,

          ∵∠B=90°,AB=4,BN=1,

          AN=

          ∵線段AN平移得到線段DM,

          DM=AN=

          AD=NM=1,ADMC,

          ∴△ADP∽△CMP

          DP=;

          2)連接NQ,

          由平移知:ANDM,且AN=DM

          MQ=DP,

          PQ=DM

          ANPQ,且AN=PQ

          ∴四邊形ANQP是平行四邊形.

          NQAP

          ∴∠BQN=BAC=45°

          又∵∠NBQ=ABC=90°,

          BN=BQ

          ANMQ

          又∵MBC的中點(diǎn),且AB=BC=4

          NB2(負(fù)數(shù)舍去).

          MEBN2

          CE22

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,BDO的直徑,點(diǎn)A、CO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長交于點(diǎn)F,過點(diǎn)CO的切線交BD延長線于點(diǎn)E

          1)求證:∠F=∠ECF;

          2)當(dāng)DF6tanEBC,求AF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面直角坐標(biāo)系xOy中點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B的坐標(biāo)為(3,3),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段ABy軸于點(diǎn)E.

          (1)求點(diǎn)E的坐標(biāo);

          (2)求拋物線的函數(shù)解析式;

          (3)點(diǎn)F為線段OB上的一個動點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)Ny軸右側(cè)),連接ON、BN,當(dāng)四邊形ABNO的面積最大時,求點(diǎn)N的坐標(biāo)并求出四邊形ABNO面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,BD是菱形ABCD的對角線.

          1)請用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫作法,保留作圖痕跡)

          2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》是中國古代數(shù)學(xué)專著在數(shù)學(xué)上有其獨(dú)到的成就,不僅最早提到了分?jǐn)?shù)問題,首先記錄了盈不足等問題.如有一道闡述盈不足的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會多11文錢;如果每人出6文錢又會缺16文錢,問買雞的人數(shù)、雞的價格各是多少?通過計(jì)算可得買雞的人數(shù)是(

          A.6B.7C.8D.9

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,CE在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABC中,ACB=90°AC=BC,P為△ABC內(nèi)部一點(diǎn),且∠APB=BPC=135°

          1)求證:△PAB∽△PBC

          2)求證:PA=2PC

          3)若點(diǎn)P到三角形的邊AB,BC,CA的距離分別為h1,h2h3,求證h12=h2·h3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價與一件乙種玩具的進(jìn)價的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.

          1)求每件甲種、乙種玩具的進(jìn)價分別是多少元?

          2)商場計(jì)劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,ABC中,ABAC,點(diǎn)F在邊BC

          1)如圖1,AFBF,求證:AB2BFBC

          2)如圖2,FC2BF,點(diǎn)E、M在直線AB上,EFACcosBn,且FM2MEMB

          ①若M在邊AB上,求的值(用含n的式子表示);

          ②若MBA的延長線上時,直接寫出n的范圍.

          查看答案和解析>>

          同步練習(xí)冊答案