日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)點E是平行四邊形ABCD的邊AB的中點,F(xiàn)是BC邊上一點,線段DE和AF相交于點P,點Q在線段DE上,且AQ∥PC.
          (1)證明:PC=2AQ.
          (2)當(dāng)點F為BC的中點時,試比較△PFC和梯形APCQ面積的大小關(guān)系,并對你的結(jié)論加以證明.

          【答案】分析:(1)延長DE,CB,相交于點R,作BM∥PC,交DR于點M.根據(jù)題意得∠AQE=∠EMB,可證得△AEQ≌△BEM,△AED≌△BER.則AD=BR=BC,再根據(jù)BM∥PC,證出RBM∽△RCP,即可得出PC=2AQ.
          (2)作BN∥AF,交RD于點N,則△RBN∽△RFP.則.還可證明△BNE≌△APE.根據(jù)相似三角形的性質(zhì)得出S△PFC=S梯形APCQ
          解答:(1)證明:
          證法一:延長DE,CB,相交于點R,作BM∥PC,交DR于點M.
          ∵AQ∥PC,BM∥PC,
          ∴MB∥AQ.
          ∴∠AQE=∠EMB
          ∵E是AB的中點,D、E、R三點共線,∴AE=EB,∠AEQ=∠BEM.
          ∴△AEQ≌△BEM.
          ∴AQ=BM.
          同理△AED≌△BER.
          ∴AD=BR=BC.
          ∵BM∥PC,
          ∴△RBM∽△RCP,相似比是1:2.
          ∴PC=2MB=2AQ.

          證法二:連接AC,交PQ于點K,易證△AKE∽△CKD,

          ∵AQ∥PC.
          ∴△AKQ∽△CKP.
          ,

          即PC=2AQ.

          (2)解:S△PFC=S梯形APCQ
          作BN∥AF,交RD于點N.
          ∴△RBN∽△RFP.
          ∵△RBM∽△RCP,相似比是1:2,
          ∴RB:RC=1:2,即B為RC的中點,
          ∴RB=BC,又F是BC的中點,


          易證△BNE≌△APE.
          ∴AP=BN.

          因PFC(視PC為底)與梯形APCQ的高的比等于△PFC與△PQC中PC邊上的高的比,
          易知等于PF與AP的比,于是可設(shè)△PFC中PC邊上的高h1=3k,梯形APCQ的高h2=2k.再設(shè)AQ=a,則PC=2a.
          ,

          因此S△PFC=S梯形APCQ
          點評:本題是一道綜合性很強的題目,考查了相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)以及平行四邊形和梯形的性質(zhì),難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          設(shè)點E是平行四邊形ABCD的邊AB的中點,F(xiàn)是BC邊上一點,線段DE和AF相交于點P,點Q在精英家教網(wǎng)線段DE上,且AQ∥PC.
          (1)證明:PC=2AQ.
          (2)當(dāng)點F為BC的中點時,試比較△PFC和梯形APCQ面積的大小關(guān)系,并對你的結(jié)論加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中.四邊形OABC是平行四邊形.直線l經(jīng)過O、C兩點.點A的坐標(biāo)為(8,0),點B的坐標(biāo)為(11,4),動點P在線段OA上從點O出發(fā)以每秒1個單位的速度向點A運動,同時動點Q從點A出發(fā)以每秒2個單位的速度沿A→B→C的方向向點C運動,過點P作PM垂直于x軸,與折線O一C-B相交于點M.當(dāng)P、Q兩點中有一點到達終點時,另一點也隨之停止運動,設(shè)點P、Q運動的時間為t秒(t>0).△MPQ的面積為S.
          (1)點C的坐標(biāo)為
           
          ,直線l的解析式為
           

          (2)試求點Q與點M相遇前S與t的函數(shù)關(guān)系式,并寫出相應(yīng)的t的取值范圍.
          (3)試求題(2)中當(dāng)t為何值時,S的值最大,并求出S的最大值.
          (4)隨著P、Q兩點的運動,當(dāng)點M在線段CB上運動時,設(shè)PM的延長線與直線l相交于點N.試探究:當(dāng)t為何值時,△QMN為等腰三角形?請直接寫出t的值.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          設(shè)點E是平行四邊形ABCD的邊AB的中點,F(xiàn)是BC邊上一點,線段DE和AF相交于點P,點Q在線段DE上,且AQ∥PC.
          (1)證明:PC=2AQ.
          (2)當(dāng)點F為BC的中點時,試比較△PFC和梯形APCQ面積的大小關(guān)系,并對你的結(jié)論加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年北京市北大附中中考一模前數(shù)學(xué)集訓(xùn)試卷(解析版) 題型:解答題

          設(shè)點E是平行四邊形ABCD的邊AB的中點,F(xiàn)是BC邊上一點,線段DE和AF相交于點P,點Q在線段DE上,且AQ∥PC.
          (1)證明:PC=2AQ.
          (2)當(dāng)點F為BC的中點時,試比較△PFC和梯形APCQ面積的大小關(guān)系,并對你的結(jié)論加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案