日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=kx2+(k-2)x-2(其中k>0).
          (1)求該拋物線與x軸的交點(diǎn)及頂點(diǎn)的坐標(biāo)(可以用含k的代數(shù)式表示);
          (2)若記該拋物線頂點(diǎn)的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
          (3)將該拋物線先向右平移數(shù)學(xué)公式個單位長度,再向上平移數(shù)學(xué)公式個單位長度,隨著k的變化,平移后的拋物線的頂點(diǎn)都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

          解:(1)當(dāng)y=0時,kx2+(k-2)x-2=0,
          即(kx-2)(x+1)=0,
          解得x1=,x2=-1,
          ∴拋物線與x軸的交點(diǎn)坐標(biāo)是(,0)與(-1,0),
          -=-=-,
          ==-,
          ∴拋物線的頂點(diǎn)坐標(biāo)是(-,-);

          (2)根據(jù)(1),|n|=|-|===++1≥2+1=1+1=2,
          當(dāng)且僅當(dāng)=,即k=2時取等號,
          ∴當(dāng)k=2時,|n|的最小值是2;

          (3)-+=,
          -+===-k-1,
          設(shè)平移后的拋物線的頂點(diǎn)坐標(biāo)為(x,y),
          ,
          消掉字母k得,y=--1,
          ∴新函數(shù)的解析式為y=--1.
          分析:(1)令y=0,解方程kx2+(k-2)x-2=0即可得到拋物線與x軸的交點(diǎn),根據(jù)拋物線的頂點(diǎn)坐標(biāo)公式(-,)代入進(jìn)行計算即可求解;
          (2)根據(jù)(1)的結(jié)果,然后利用絕對值的性質(zhì),再根據(jù)恒不等式列式進(jìn)行解答;
          (3)根據(jù)左加右減,上加下減,寫出平移后的拋物線頂點(diǎn)坐標(biāo),然后消掉字母k即可得解.
          點(diǎn)評:本題考查了拋物線與x軸的交點(diǎn)問題,頂點(diǎn)坐標(biāo)以及二次函數(shù)的性質(zhì),二次函數(shù)的圖象與幾何變換,綜合性較強(qiáng),難度較大,需仔細(xì)分析求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2(k>0)與直線y=ax+b(a≠0)有兩個公共點(diǎn),它們的橫坐標(biāo)分別為x1、x2,又有直線y=ax+b與x軸的交點(diǎn)坐標(biāo)為(x3,0),則x1、x2、x3滿足的關(guān)系式是( 。
          A、x1+x2=x3
          B、
          1
          x1
          +
          1
          x2
          =
          1
          x3
          C、x3=
          x1+x2
          x1x2
          D、x1x2+x2x3=x1x3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知拋物線y=kx2+2kx-3k,交x軸于A、B兩點(diǎn)(A在B的左邊),交y軸于C點(diǎn),且y有最大值4.
          (1)求拋物線的解析式;
          (2)在拋物線上是否存在點(diǎn)P,使△PBC是直角三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當(dāng)x>0時,y>1.
          (1)求拋物線的頂點(diǎn)坐標(biāo);
          (2)求k的取值范圍;
          (3)過動點(diǎn)P(0,n)作直線l⊥y軸,點(diǎn)O為坐標(biāo)原點(diǎn).
          ①當(dāng)直線l與拋物線只有一個公共點(diǎn)時,求n關(guān)于k的函數(shù)關(guān)系式;
          ②當(dāng)直線l與拋物線相交于A、B兩點(diǎn)時,是否存在實(shí)數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=kx2+(k-2)x-2(其中k>0).
          (1)求該拋物線與x軸的交點(diǎn)及頂點(diǎn)的坐標(biāo)(可以用含k的代數(shù)式表示);
          (2)若記該拋物線頂點(diǎn)的坐標(biāo)為P(m,n),直接寫出|n|的最小值;
          (3)將該拋物線先向右平移
          1
          2
          個單位長度,再向上平移
          1
          k
          個單位長度,隨著k的變化,平移后的拋物線的頂點(diǎn)都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:第26章《二次函數(shù)》中考題集(37):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

          已知拋物線y=kx2-2kx+9-k(k為常數(shù),k≠0),且當(dāng)x>0時,y>1.
          (1)求拋物線的頂點(diǎn)坐標(biāo);
          (2)求k的取值范圍;
          (3)過動點(diǎn)P(0,n)作直線l⊥y軸,點(diǎn)O為坐標(biāo)原點(diǎn).
          ①當(dāng)直線l與拋物線只有一個公共點(diǎn)時,求n關(guān)于k的函數(shù)關(guān)系式;
          ②當(dāng)直線l與拋物線相交于A、B兩點(diǎn)時,是否存在實(shí)數(shù)n,使得不論k在其取值范圍內(nèi)取任意值時,△AOB的面積為定值?如果存在,求出n的值;如果不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案