日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 證明:不論m為何值,代數(shù)式x2-4x+7的值都大于零,并求出當(dāng)x為何值時代數(shù)式有最小值,最小值是多少?(提示:用配方法)
          分析:先利用配方法得到x2-4x+7=(x-2)2+3,再根據(jù)非負(fù)數(shù)的性質(zhì)即可得到不論m為何值,代數(shù)式x2-4x+7的值都大于零;并且當(dāng)(x-2)2=0,即x=2時,代數(shù)式x2-4x+7有最小值.
          解答:證明:x2-4x+7
          =x2-4x+4+3
          =(x-2)2+3,
          ∵(x-2)2≥0,
          ∴(x-2)2+3>0,
          即不論m為何值,代數(shù)式x2-4x+7的值都大于零;
          當(dāng)(x-2)2=0,即x=2時,代數(shù)式x2-4x+7有最小值,最小值為3.
          點評:本題考查了配方法的應(yīng)用:配方法的理論依據(jù)是公式a2±2ab+b2=(a±b)2.二次三項式是完全平方式,則常數(shù)項是一次項系數(shù)一半的平方.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          29、試證明:不論m為何值,方程2x2-(4m-1)x-m2-m=0總有兩個不相等的實數(shù)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)y=x2-2(m-1)x+2m2-2
          (1)證明:不論m為何值,二次函數(shù)圖象的頂點均在某一函數(shù)圖象上,并求出此圖象的函數(shù)解析式;
          (2)若二次函數(shù)圖象在x軸上截得的線段長為2
          3
          ,求出此二次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          證明:不論x為何值,代數(shù)式2x2-4x+3的值恒大于0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知代數(shù)式-x2+6x-10
          (1)用配方法證明:不論x為何值,代數(shù)式的值總為負(fù)數(shù);
          (2)當(dāng)x為何值時,代數(shù)式的值最大?最大值是多少.

          查看答案和解析>>

          同步練習(xí)冊答案