日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD,將邊CD繞點C順時針旋轉(zhuǎn)60°,得到線段CE,連接DE,AEBD交于點F

          (1)求∠AFB的度數(shù);

          (2)求證:BFEF

          (3)連接CF,直接用等式表示線段AB,CFEF的數(shù)量關(guān)系.

          【答案】(1)∠AFB=60°;(2)見解析;(3)AB+CF=2EF

          【解析】

          (1)根據(jù)正方形的性質(zhì)得∠ADB45°,再有旋轉(zhuǎn)圖形的邊相等,則對應(yīng)的底角也相等求出∠DAE=∠DEA15°,從而得到∠AFB60°.

          (2)由等邊三角形及∠DEA15°,得到∠CEF=∠CBF45°,再結(jié)合已知根據(jù)SAS證明ADF≌△CDF,再由角的代換證明出ECF≌△BCF,從而證明BFEF.

          (3CCGBDG,由已知求出∠GCF30°從而得到CF2FG,設(shè)FGx,從而求出AB+CF2x+2x,EFBFBG+FGx+x,最終得到AB+CF2EF.

          解:(1)∵四邊形ABCD是正方形,

          ∴∠ADBADC45°,

          由旋轉(zhuǎn)得:CDCE,∠DCE60°,

          ∴△DCE是等邊三角形,

          CDDEAD,∠ADE90°+60°150°,

          ∴∠DAE=∠DEA15°,

          ∴∠AFB=∠FAD+ADB15°+45°60°;

          2)連接CF,

          ∵△CDE是等邊三角形,

          ∴∠DEC60°,

          ∵∠DEA15°,

          ∴∠CEF=∠CBF45°,

          ∵四邊形ABCD是正方形,

          ADCD,∠ADF=∠CDF45°,

          DFDF

          ∴△ADF≌△CDFSAS),

          ∴∠DAF=∠DCF15°,

          ∴∠FCB90°15°75°,∠ECF60°+15°75°,

          ∴∠FCB=∠ECF

          CFCF,

          ∴△ECF≌△BCFSAS),

          BFEF

          3AB+CF2EF,理由是:

          CCGBDG,

          ∵∠CBD45°,

          ∴△CGB是等腰直角三角形,

          ∵∠BCF75°,

          ∴∠GCF30°,

          CF2FG,

          設(shè)FGx,則CF2x,CGBGx

          BCABCGx,

          AB+CF2x+2x,EFBFBG+FGx+x,

          AB+CF2EF

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABO的直徑,把AB分成幾條相等的線段,以每條線段為直徑分別畫小圓,設(shè)ABa,那么O的周長lπa

          計算:(1)AB分成兩條相等的線段,每個小圓的周長;

          (2)AB分成三條相等的線段,每個小圓的周長l3   ;

          (3)AB分成四條相等的線段,每個小圓的周長l4   ;

          (4)AB分成n條相等的線段,每個小圓的周長ln   

          結(jié)論:把大圓的直徑分成n條相等的線段,以每條線段為直徑分別畫小圓,那么每個小圓周長是大圓周長的   .請仿照上面的探索方法和步驟,計算推導(dǎo)出每個小圓面積與大圓面積的關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=56.3°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的NF這層上曬太陽.

          (1)求樓房的高度約為多少米?

          (2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.

          (1)求拋物線的解析式及頂點坐標(biāo);

          (2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;

          (3)在直線AB的下方拋物線上找一點P,連接PAPB使得△PAB的面積最大,并求出這個最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)yx>0)的圖象經(jīng)過點A,作ACx軸于點C

          (1)求k的值;

          (2)直線yax+ba≠0)圖象經(jīng)過點Ax軸于點B,且OB=2AC.求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)yax22ax3a≠0)的圖象經(jīng)過點A

          1)求二次函數(shù)的對稱軸;

          2)當(dāng)A(﹣1,0)時,

          ①求此時二次函數(shù)的表達(dá)式;

          ②把yax22ax3化為yaxh2+k的形式,并寫出頂點坐標(biāo);

          ③畫出函數(shù)的圖象.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉(zhuǎn)等方式使兩條短邊拼合到一起,從而解決問題.

          (1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.

          解題思路:延長DC到點E,使CE=BD,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而解決問題.

          根據(jù)上述解題思路,三條線段DA、DB、DC之間的等量關(guān)系是;(直接寫出結(jié)果)

          (2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點D是邊BC下方一點,∠BDC=90°,探索三條線段DA、DB、DC之間的等量關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在矩形ABCD中,PCD邊上一點(DPCP),APB90°MAB上,且APMAPD,過點BBNMPDC于點N

          1)求證:四邊形PMBN是菱形;

          2)求證:ADBCDPPC;

          3)如圖2,連接AC,分別交PMPB于點E,F,若DP1,AD2,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,頂點A,C分別在x軸、y軸的正半軸上,拋物線y=-x2bxc經(jīng)過點BC兩點,點D為拋物線的頂點,連接ACBD,CD.

          (1)求此拋物線的解析式;

          (2)求此拋物線頂點D的坐標(biāo)和四邊形ABDC的面積.

          查看答案和解析>>

          同步練習(xí)冊答案