【題目】若關于x的分式方程 無解,則m的值為( )
A.-1.5
B.1
C.-1.5或2
D.-0.5或-1.5
【答案】D
【解析】解:方程兩邊都乘以x(x-3)得:(2m+x)x-x(x-3)=2(x-3),
即(2m+1)x=-6,
分兩種情況考慮:
①∵當2m+1=0時,此方程無解,
∴此時m=-0.5,
②∵關于x的分式方程 無解,
∴x=0或x-3=0,
即x=0,x=3,
當x=0時,代入(2m+1)x=-6得:0=-6,
解得:此方程無解;
當x=3時,代入(2m+1)x=-6得:(2m+1)×3=-6,
解得:m=-1.5,
∴m的值是-0.5或-1.5,
故選D.
【考點精析】通過靈活運用去分母法和分式方程的增根,掌握先約后乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路.求得解后要驗根,原留增舍別含糊;使方程的分母為0的解稱為原方程的增根即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為C(1,4),交x軸于A、B兩點,交y軸于點D,其中點B的坐標為(3,0).
(1)求拋物線的解析式;
(2)如圖2,過點A的直線與拋物線交于點 E,交y軸于點F,其中點E的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為直線 PQ上的一動點,則x軸上是否存在一點H,使D、G,H、F四點所圍成的四邊形周長最。咳舸嬖,求出這個最小值及點G、H的坐標;若不存在,請說明理由;
(3)如圖3,在拋物線上是否存在一點T,過點T作x軸的垂線,垂足為點M,過點M作MN∥BD,交線段AD于點N,連接MD,使△DNM∽△BMD?若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某品牌電風扇銷售量的情況,對某商場5月份該品牌甲、乙、丙三種型號的電風扇銷售量進行統(tǒng)計,繪制如下兩個統(tǒng)計圖(均不完整).請你結合圖中的信息,解答下列問題:
(1)該商場5月份售出這種品牌的電風扇共多少臺?
(2)若該商場計劃訂購這三種型號的電風扇共2000臺,根據5月份銷售量的情況,求該商場應訂購丙種型號電風扇多少臺比較合理?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解該校七年級學生的身高情況,抽樣調查了部分同學,將所得數(shù)據處理后,制成扇形統(tǒng)計圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測量時精確到1cm):
(1)請根據所提供的信息計算身高在160~165cm范圍內的學生人數(shù),并補全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計圖的哪個范圍內?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級學生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級”或“八年級”)學生的身高比較整齊.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABOC的頂點O在坐標原點,頂點B,C分別在x,y軸的正半軸上,頂點A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點A按逆時針反向旋轉90°得到矩形AB′O′C′,若點O的對應點O′恰好落在此反比例函數(shù)圖象上,則
的值是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com