日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】小明學(xué)習(xí)了特殊的四邊形---平行四邊形后,對(duì)特殊四邊形的探究產(chǎn)生了興趣,發(fā)現(xiàn)另外一類特殊四邊形,如圖1,我們把兩條對(duì)角線互相垂直的四邊形叫做垂美四邊形.

          (1)概念理在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是

          (2)性質(zhì)探究:如圖1,四邊形ABCD是垂美四邊形,試探究兩組對(duì)邊AB、CDBC、AD之間的數(shù)量關(guān)系.

          (3)問題解決:如圖2,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5

          ①求證:四邊形BCGE為垂美四邊形;

          ②直接寫出四邊形BCGE的面積.

          【答案】1)菱形、正方形;(2;(3)①見詳解;②.

          【解析】

          1)由平行四邊形、矩形、菱形、正方形的性質(zhì)即可得出結(jié)論;

          2)利用勾股定理,分別求出,,然后即可得到結(jié)論;

          3)①連接CG、BE,證出∠GAB=CAE,由SAS證明△GAB≌△CAE,得出BG=CE,∠ABG=AEC,再由角的互余關(guān)系和三角形內(nèi)角和定理求出∠BNM=90°,得出BGCE即可;

          ②根據(jù)垂美四邊形的性質(zhì)、勾股定理、結(jié)合面積公式計(jì)算即可.

          解:(1)∵在平行四邊形、矩形、菱形、正方形中,兩條對(duì)角線互相垂直的四邊形是菱形、正方形,

          ∴菱形和正方形一定是垂美四邊形;

          故答案為:菱形、正方形;

          2)設(shè)ACBD相交于點(diǎn)O

          由勾股定理,得:

          ,;

          ;

          ;

          ;

          3)①證明:連接CG、BE,如圖2所示:


          ∵四邊形ACFG和四邊形ABDE是正方形,

          ∴∠F=CAG=BAE=90°,FG=AG=AC=CF,AB=AE,

          ∴∠CAG+BAC=BAE+BAC,

          即∠GAB=CAE,

          在△GAB和△CAE中,

          ,

          ∴△GAB≌△CAESAS),

          BG=CE,∠ABG=AEC

          又∵∠AEC+AME=90°,∠AME=BMN,

          ∴∠ABG+BMN=90°,

          ∴∠BNM=90°,

          BGCE

          ∴四邊形BCGE為垂美四邊形;

          ②解:∵FG=CF=AC=4,∠ACB=90°,AB=5,

          BC=

          BF=BC+CF=7,

          RtBFG中,BG=,

          CE=BG=,

          ∵四邊形BCGE為垂美四邊形,

          ∴四邊形BCGE的面積=BCE的面積+GCE的面積

          =

          =

          =

          =;

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線x軸交A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

          (1)求A、B兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

          (2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作軸的平行線交拋物線于E點(diǎn),求線段PE長度的最大值;

          (3)點(diǎn)G是拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使AC、FG這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系 中,函數(shù)的圖象與直線交于點(diǎn)A(3,m).

          (1)求k、m的值;

          (2)已知點(diǎn)P(n,n)(n>0),過點(diǎn)P作平行于軸的直線,交直線y=x-2于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù) 的圖象于點(diǎn)N.

          ①當(dāng)n=1時(shí),判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

          ②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tanACO=2.

          (1)求該反比例函數(shù)和一次函數(shù)的解析式;

          (2)求點(diǎn)B的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示有下列4個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1的實(shí)數(shù)),其中正確結(jié)論的個(gè)數(shù)為(  )

          A. 0 B. 1 C. 2 D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

          A.一處B.二處C.三處D.四處

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰三角形ABC中,ABAC4,∠BAC100°,點(diǎn)D是底邊BC的動(dòng)點(diǎn)(點(diǎn)D不與BC重合),連接AD,作∠ADE40°,DEAC交于點(diǎn)E

          1)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請(qǐng)說明理由;

          2)在點(diǎn)D的運(yùn)動(dòng)過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求出∠BDA的度數(shù);若不可以,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PA、PB、DE切分別切⊙O于點(diǎn)A、B、C,若∠P=50°,則∠DOE=_____°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,ABAC,點(diǎn)DAC上,且BDBCAD,求∠A的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案