日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知AB=DE,AF=CD,EF=BC,∠A=30°,∠B=100°,則∠EFD=
          50°
          50°
          分析:在△ABC和△DEF中由AB=DE,AF=CD,EF=BC證明△ABC≌△DEF,即可∠A=∠D,∠B=∠E,∠BCA=∠EFD,結合∠A=30°,∠B=100°求出∠EFD的度數(shù).
          解答:解:∵在△ABC和△DEF中,
          AB=DE
          AF=CD
          EF=BC
          ,
          ∴△ABC≌△DEF(SSS),
          ∴∠A=∠D,∠B=∠E,∠BCA=∠EFD,
          ∵∠A=30°,∠B=100°,
          ∴∠C=50°,
          ∴∠EFD=50,
          故答案為50°.
          點評:本題主要考查全等三角形的判定與性質的知識點,解答本題的關鍵是熟練掌握兩三角形全等的判定定理,此題難度一般.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          5、如圖,已知AB∥DE,∠A=136°,∠C=164°,則∠D的度數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知AB=DE,BC=EF,∠B=∠E,A、F、C、D在同一條直線上,
          (1)求證:EF∥BC;
          (2)若AD=10,CF=4,求AF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,請補充完整過程,說明△ABC≌△DEF的理由.
          ∵AB∥DE
          ∴∠
          A
          A
          =∠
          EDF
          EDF

          ∵BC∥EF
          ∴∠
          F
          F
          =∠
          BCA
          BCA
            ( 同 理 )
          ∵AD=CF   (已知)
          ∴AD+CD=CF+CD
          AC
          AC
          =
          DF
          DF

          在△ABC和△DEF中

          ∴△ABC≌△DEF
          (ASA)
          (ASA)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCE,求∠DCM的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知AB∥DE,∠B=80°,CM平分∠BCD,CM⊥CN,垂足為C.求∠NCE的度數(shù).

          查看答案和解析>>

          同步練習冊答案