日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          22、如圖,四邊形ABCD中,點E在邊CD上,連接AE、BE.給出下列五個關系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.將其中的三個關系式作為題設,另外兩個作為結論,構成一個命題.
          (1)用序號寫出一個真命題(書寫形式如:如果×××,那么××).并給出證明;
          (2)用序號再寫出三個真命題(不要求證明);
          (3)加分題:真命題不止以上四個,想一想,就能夠多寫出幾個真命題,每多寫出一個真命題就給你加1分,最多加2分.
          分析:(1)如果①②③,那么④⑤,延長AE交BC的延長線于F,易得△ADE≌△FCE,可得到點E是AF的中點,故△ABF是等腰三角形,從而有:∠3=∠4,AD+BC=CF+BC=BF=AB;
          (2)還結合如圖,證得如果①②④,那么③⑤,如果①③④,那么②⑤,如果①③⑤,那么②④.
          解答:解:(1)如果①②③,那么④⑤
          證明:如圖,延長AE交BC的延長線于F
          ∵AD∥BC,
          ∴∠1=∠F
          又∵∠AED=∠CEF,DE=EC
          ∴△ADE≌△FCE
          ∴AD=CF,AE=EF
          ∵∠1=∠F,∠1=∠2,
          ∴∠2=∠F
          ∴AB=BF,
          ∴∠3=∠4,
          ∴AD+BC=CF+BC=BF=AB;
          (說明:其他真命題的證明可參照上述過程相應給分)
          (2)如果①②④,那么③⑤
          如果①③④,那么②⑤
          如果①③⑤,那么②④;
          (3)若(1)(2)中四個命題含假命題(“如果②③④,那么①⑤”),則不加分,若(3)中含假命題,也不給分.
          點評:本題考查與梯形有關的問題,在梯形中通常作輔助線來構造三角形,來轉移有關線段來求解.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
          (提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
          (1)求證:PA=PC.
          (2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

          (I)求證:AE=EF;
          (Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

          查看答案和解析>>

          同步練習冊答案