日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2000•蘭州)如圖,已知AB為半⊙O的直徑,直線MN與⊙O相切于C點,AE⊥MN于E,BF⊥MN于F.
          求證:(1)AE+BF=AB;(2)EF2=4AE•BF.

          【答案】分析:(1)連接OC,先利用AE、BF都垂直于MN,而AB≠EF,可證四邊形ABFE是梯形,而O是AB中點,且AE∥OC∥BF,利用平行線分線段成比例定理的推論,易得CE:CF=AO:BO,那么C也是EF中點,從而OC使梯形中位線,利用梯形中位線定理可證AE+BF=2OC,而AB=2OC,即可證;
          (2)連接AC、BC,AB是直徑,易得∠ACB是90°,從而∠ACE+∠FCB=90°,而BF⊥MN,易得∠FCB+∠FBC=90°,利用同角的余角相等,可證∠ECA=∠FBC,再加上一對直角相等,容易證出△EAC∽△FCB,可得比例線段,再結(jié)合CE=CF=EF,代入比例線段,化簡即可得證.
          解答:證明:(1)連接OC,
          ∵AE⊥MN,BF⊥MN,
          ∴AE∥BF,而AB≠EF,
          ∴四邊形ABFE為梯形,(1分)
          ∵OC∥AE∥BF,
          ∴EC=CF,
          ∴OC為梯形ABFE的中位線,
          ∴AE+BF=2OC,
          即:AE+BF=AB.(2分)

          (2)連接AC、BC,
          ∵AB是直徑,
          ∴∠ACB=90°,
          ∴∠ECA+∠FCB=90°,
          ∵∠CBF+∠FCB=90°,
          ∠CBF=∠ECA,
          ∴△AEC∽△CFB,
          ∴CF•EC=AE•BF,(1分)
          ∵CF=EC=EF,(1分)
          ∴EF2=4AE•BF.(1分)
          點評:本題利用了梯形的判定、平行線分線段成比例定理的推論、梯形中位線定理、同角的余角相等、相似三角形的判定和性質(zhì)等知識.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

          (2000•蘭州)如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,已知點B的坐標是(1,1),
          (1)求直線AB和拋物線所表示的函數(shù)解析式;
          (2)如果在第一象限,拋物線上有一點D,使得S△OAD=S△OBC,求這時D點坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2000年甘肅省蘭州市中考數(shù)學試卷(解析版) 題型:解答題

          (2000•蘭州)如圖,直線AB過x軸上的點A(2,0),且與拋物線y=ax2相交于B、C兩點,已知點B的坐標是(1,1),
          (1)求直線AB和拋物線所表示的函數(shù)解析式;
          (2)如果在第一象限,拋物線上有一點D,使得S△OAD=S△OBC,求這時D點坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:解答題

          (2000•蘭州)如圖,已知半圓O,交AB于D、AC于E,BC是直徑,若∠A=60°,AB=16,AC=10,求AD、AE、DE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2000年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

          (2000•蘭州)如圖,已知半圓O,交AB于D、AC于E,BC是直徑,若∠A=60°,AB=16,AC=10,求AD、AE、DE的長.

          查看答案和解析>>

          同步練習冊答案