日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3、一個三角形的各邊長之比為2:5:6,現(xiàn)有另一個三角形和它相似,且這個三角形的最大邊為24,則這個三角形的最小邊長為
          8
          分析:由一個三角形的各邊長之比為2:5:6,現(xiàn)有另一個三角形和它相似,即可得這個三角形的各邊長之比為2:5:6,又由這個三角形的最大邊為24,即可求得這個三角形的最小邊長.
          解答:解:∵一個三角形的各邊長之比為2:5:6,現(xiàn)有另一個三角形和它相似,
          ∴這個三角形的各邊長之比為2:5:6,
          ∴設這個三角形的各邊長之比為2x,5x,6x,
          ∵這個三角形的最大邊為24,
          ∴6x=24,
          ∴x=4,
          ∴2x=8,
          ∴這個三角形的最小邊長為8.
          故答案為:8.
          點評:此題考查了相似三角形的性質.注意掌握相似三角形的對應邊成比例是解此題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀材料并解答問題:
          我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
          關于勾股定理的研究還有一個很重要的內容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
          方法1:若m為奇數(shù)(m≥3),則a=m,b=
          1
          2
          (m2-1)和c=
          1
          2
          (m2+1)是勾股數(shù).
          方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
          (1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
          (2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
          精英家教網(wǎng)
          (3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
           
          棵.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知一個三角形最短邊上的高為8cm,若和它相似的另一個三角形的各邊之比為3:4:5,則它的最長邊上的高為
          4.8
          4.8
          cm.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          一個三角形的各邊長之比為2:5:6,現(xiàn)有另一個三角形和它相似,且這個三角形的最大邊為24,則這個三角形的最小邊長為________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          我國是最早了解和應用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應用,古希臘數(shù)學家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
          關于勾股定理的研究還有一個很重要的內容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學派研究出的確定勾股數(shù)組的兩種方法:
          方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學公式(m2-1)和c=數(shù)學公式(m2+1)是勾股數(shù).
          方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
          (1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
          (2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:

          (3)某園林管理處要在一塊綠地上植樹,使之構成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹______棵.

          查看答案和解析>>

          同步練習冊答案