日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點.
          (1)求出m的值,并選取適當?shù)臄?shù)據(jù)填入下表,在下圖的直角坐標系內描點畫出該拋物線的圖象;
          x-10123
          y03430
          (2)求拋物線與x軸的交點坐標;
          (3)直接寫出x取何值時,拋物線位于x軸上方;
          (4)直接寫出x取何值時,y的值隨x的增大而增大.

          解:(1)將(0,3)代入拋物線的解析式得m=3,則拋物線的解析式為y=-x2+2x+3=-(x-1)2+4,
          列表如圖,
          畫圖:
          (2)對于拋物線y=-x2+2x+3,令y=0,則有:-x2+2x+3=0,
          解得x1=3,x2=-1,
          ∴拋物線與x軸交點坐標為(3,0),(-1,0);
          (3)-1<x<3時,拋物線位于x軸上方.
          (4)由圖可知,x<1時,y的值隨x的增大而增大.
          分析:(1)先把點(0,3)代入拋物線y=-x2+(m-1)x+m,求出m的值,則拋物線的解析式為y=-x2+2x+3,配成頂點式為y=-(x-1)2+4,得到其對稱軸為直線x=1,然后選取適當數(shù)據(jù)填寫表格、描點、連線;
          (2)令-x2+2x+3=0,解方程即可得到物線與x軸的交點坐標;
          (3)觀察圖象得到拋物線位于x軸上方所對應的自變量的取值范圍為-1<x<3;
          (4)觀察圖象得到拋物線位于對稱軸左側y隨x的增大而減小,即x<1.
          點評:本題考查了二次函數(shù)的圖象:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;當a<0,拋物線開口方向向下.也考查了拋物線與x軸的交點.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經(jīng)過B、C兩點,點精英家教網(wǎng)A是拋物線與x軸的另一個交點.
          (1)求拋物線的函數(shù)表達式;
          (2)若點P在線段BC上,且S△PAC=
          12
          S△PAB,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知x1、x2是拋物線y=x2-2(m-1)x+m2-7與x軸的兩個交點的橫坐標,且x12+x22=10.
          求:(1)x1、x2的值;
          (2)拋物線的頂點坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知一元二次方程-x2+bx+c=0的兩個實數(shù)根是m,4,其中0<m<4.
          (1)求b、c的值(用含m的代數(shù)式表示);
          (2)設拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C.若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式及點C的坐標;
          (3)在(2)中所得的拋物線上是否存在一點P,使得PC=PD?若存在,求出P點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          16、已知拋物線y=x2+bx+c的部分圖象如圖所示,若方程x2+bx+c=0有兩個同號的實數(shù)根,則c的值可以是
          2
          .(寫出一個即可)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          11、在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉180°,所得拋物線的解析式是( 。

          查看答案和解析>>

          同步練習冊答案