日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過B點(diǎn)作BGAE于點(diǎn)G,延長(zhǎng)BGAD于點(diǎn)H.在下列結(jié)論中:

          AH=DF;②∠AEF=45°;S四邊形EFHG=SDEF+SAGH;④△AEF≌△CDE

          其中正確的結(jié)論有______ (填正確的序號(hào))

          【答案】①②

          【解析】分析:先判斷出∠DAE=∠ABH,再判斷△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判斷出Rt△ABH≌Rt△DCF從而得到①正確,根據(jù)三角形的外角求出∠AEF=45°,得出②正確;連接HE,判斷出S△EFH≠S△EFD得出③錯(cuò)誤.再根據(jù)△AEF最長(zhǎng)邊AE和△CED的最長(zhǎng)邊CD不相等,可判斷不是全等三角形.

          詳解:∵BD是正方形ABCD的對(duì)角線,
          ∴∠ABE=∠ADE=∠CDE=45°,AB=BC,
          ∵BE=BC,
          ∴AB=BE,
          ∵BG⊥AE,
          ∴BH是線段AE的垂直平分線,∠ABH=∠DBH=22.5°,
          Rt△ABH中,∠AHB=90°-∠ABH=67.5°,
          ∵∠AGH=90°,
          ∴∠DAE=∠ABH=22.5°,
          在△ADE和△CDE中,

          ∴△ADE≌△CDE,
          ∴∠DAE=∠DCE=22.5°,
          ∴∠ABH=∠DCF,
          Rt△ABHRt△DCF中,


          ∴Rt△ABH≌Rt△DCF,
          ∴AH=DF,∠CFD=∠AHB=67.5°,
          ∵∠CFD=∠EAF+∠AEF,
          ∴67.5°=22.5°+∠AEF,
          ∴∠AEF=45°,故①②正確;
          如圖,連接HE,
          ∵BHAE垂直平分線,
          ∴AG=EG,
          ∴S△AGH=S△HEG,
          ∵AH=HE,


          ∴∠AHG=∠EHG=67.5°,
          ∴∠DHE=45°,
          ∵∠ADE=45°,
          ∴∠DEH=90°,∠DHE=∠HDE=45°,
          ∴EH=ED,
          ∴△DEH是等腰直角三角形,
          ∵EF不垂直DH,
          ∴FH≠FD,
          ∴S△EFH≠S△EFD,
          ∴S四邊形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③錯(cuò)誤,

          根據(jù)△AEF最長(zhǎng)邊AE和△CED的最長(zhǎng)邊CD不相等,可判斷不是全等三角形,故④不正確.
          ∴正確的是①②,
          故答案為①②.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】今年某中學(xué)到鵝鼻嘴公園植樹,已知該中學(xué)離公園約15km,部分學(xué)生騎自行車出發(fā)40分鐘后,其余學(xué)生乘汽車出發(fā),汽車速度是自行車速度的3倍,全體學(xué)生同時(shí)到達(dá),設(shè)自行車的速度為v km/h.

          (1) 求v的值;

          (2) 植樹活動(dòng)完成后,由于學(xué)生比較勞累,騎自行車的學(xué)生的速度變?yōu)樵瓉淼?/span>,汽車速度不變,為了使兩批學(xué)生同時(shí)到達(dá)學(xué)校,那么騎自行的學(xué)生應(yīng)該提前多少時(shí)間出發(fā).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)BC)上任意一點(diǎn),PBC延長(zhǎng)線上一點(diǎn),N∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN

          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

          證明:在邊AB上截取AE=MC,連ME

          正方形ABCD中,∠B=∠BCD=90°,AB=BC

          ∴∠NMC=180°—∠AMN—∠AMB

          =180°—∠B—∠AMB

          =∠MAB=∠MAE

          (下面請(qǐng)你完成余下的證明過程)

          2)若將(1)中的正方形ABCD”改為正三角形ABC”(如圖2,N∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時(shí),結(jié)論AM=MN是否還成立?請(qǐng)說明理由.

          3)若將(1)中的正方形ABCD”改為邊形ABCD…X”,請(qǐng)你作出猜想:當(dāng)∠AMN=°時(shí),結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          1 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校計(jì)劃購買籃球、排球共20個(gè),購買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購買3個(gè)籃球的費(fèi)用與購買5個(gè)排球的費(fèi)用相同。

          (1)籃球和排球的單價(jià)各是多少元?

          (2)若購買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請(qǐng)你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).

          1)試說明:FG∥AB;

          2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB = BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn);

          (1)求證:四邊形BDEF是菱形;(2)若AB =12cm,求菱形BDEF的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某工程隊(duì)(有甲、乙兩組)承接了世界園藝博覽會(huì)的一項(xiàng)小型工程任務(wù),這項(xiàng)任務(wù)規(guī)定在若干天內(nèi)完成.已知甲組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多20天,乙組單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多10天.如果甲、乙兩組先合作15天,剩下的由甲單獨(dú)做,則正好如期完成,那么規(guī)定的時(shí)間是多少天?(列方程解應(yīng)用題)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°后得到△AB'C',若AB=4,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是( )

          A.
          π
          B.
          π
          C.2π
          D.4π

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD中,EAB邊上一點(diǎn),過點(diǎn)DDFDE,與BC延長(zhǎng)線交于點(diǎn)F.連接EF,CD邊交于點(diǎn)G,與對(duì)角線BD交于點(diǎn)H.

          (1)若BF=BD=,求BE的長(zhǎng);

          (2)若∠ADE=2BFE,求證:FH=HE+HD.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案