日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將ABC沿著點(diǎn)A到點(diǎn)D的方向平移,使點(diǎn)A變換為點(diǎn)D,點(diǎn)E、F分別是B、C的對(duì)應(yīng)點(diǎn).

          1)畫出ABCAB邊上的高CH;(提醒:別忘了標(biāo)注字母);

          2)請(qǐng)畫出平移后的DEF;

          3)平移后,線段AB掃過的部分所組成的封閉圖形的面積是___________.

          【答案】1)見解析;(2)見解析;(39

          【解析】

          1)利用格點(diǎn)的性質(zhì),過點(diǎn)CCHAB,BA的延長(zhǎng)線于點(diǎn)H.

          2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)BC平移后的對(duì)應(yīng)點(diǎn)E、F的位置,然后順次連接即可;
          3)根據(jù)平移的性質(zhì),對(duì)應(yīng)點(diǎn)的連線平行且相等,根據(jù)平行四邊形面積計(jì)算即可.

          1)如圖所示:

          2)如圖所示:

          3)線段AB掃過的部分所組成的封閉圖形即平行四邊形

          平行四邊形的面積=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知△PQR在直角坐標(biāo)系中的位置如圖所示:

          (1) 求出△PQR的面積;

          (2) 畫出△P′Q′R′,使△P′Q′R′△PQR關(guān)于y軸對(duì)稱,寫出點(diǎn)P′Q′、R′的坐標(biāo);

          (3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

          小明的思路是:過PPEAB,通過平行線性質(zhì)來(lái)求∠APC.

          (1)按小明的思路,易求得∠APC的度數(shù)為_____度;

          (2)問題遷移:如圖2,ABCD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,PCD=β,當(dāng)點(diǎn)PB、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問∠APCα、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

          (3)(2)的條件下,如果點(diǎn)PB、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫出∠APCα、β之間的數(shù)量關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,E是AC的中點(diǎn),OE交CD于點(diǎn)F.

          (1)若∠BCD=36°,BC=10,求BD的長(zhǎng);
          (2)判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
          (3)求證:2CE2=ABEF.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)A,B分別是x軸、y軸上的動(dòng)點(diǎn),點(diǎn)C,D是某個(gè)函數(shù)圖象上的點(diǎn),當(dāng)四邊形ABCD(A,B,C,D各點(diǎn)依次排列)為正方形時(shí),我們稱這個(gè)正方形為此函數(shù)圖象的“伴侶正方形”.
          例如:在圖1中,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個(gè)“伴侶正方形”.

          (1)如圖1,若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有“伴侶正方形”的邊長(zhǎng);
          (2)如圖2,若某函數(shù)是反比例函數(shù) (k>0),它的圖象的“伴侶正方形”為ABCD,點(diǎn)D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)的解析式;
          (3)如圖3,若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的“伴侶正方形”為ABCD,C,D中的一個(gè)點(diǎn)坐標(biāo)為(3,4),請(qǐng)你直接寫出該二次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:

          (1)這次被調(diào)查的學(xué)生共有人;
          (2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
          (3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】感知:

          如圖①,AD平分∠BAC,∠B+C180°,∠B90°.判斷DBDC的大小關(guān)系并證明.

          探究:

          如圖②,AD平分∠BAC,∠ABD+ACD180°,∠ABD90°DBDC的大小關(guān)系變嗎?請(qǐng)說(shuō)明理由.

          應(yīng)用:

          如圖③,四邊形ABDC中,∠B45°,∠C135°,DBDCa,則ABAC   .(用含a的代數(shù)式表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)D、F在線段AB上,點(diǎn)EG分別在線段BCAC上,CDEF,∠1=∠2.

          (1)判斷DGBC的位置關(guān)系,并說(shuō)明理由;

          (2)若DG是∠ADC的平分線,∠3=85°,且∠DCE:∠DCG=9:10,ABCD有怎樣的位置關(guān)系?并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個(gè)行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時(shí),卻早到1小時(shí);③乙車出發(fā)后2.5小時(shí)追上甲車;④當(dāng)甲、乙兩車相距50千米時(shí),t.其中正確的是________(填序號(hào)).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案