日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.求作∠ABC的平分線,分別交AD,AD于P,Q兩點;并證明AP=AQ.(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)

          【答案】解:BQ就是所求的∠ABC的平分線,P、Q就是所求作的點.
          證明:∵AD⊥BC,
          ∴∠ADB=90°,
          ∴∠BPD+∠PBD=90°.
          ∵∠BAC=90°,
          ∴∠AQP+∠ABQ=90°.
          ∵∠ABQ=∠PBD,
          ∴∠BPD=∠AQP.
          ∵∠BPD=∠APQ,
          ∴∠APQ=∠AQP,
          ∴AP=AQ.
          【解析】根據(jù)角平分線的性質(zhì)作出BQ即可.先根據(jù)垂直的定義得出∠ADB=90°,故∠BPD+∠PBD=90°. 再根據(jù)余角的定義得出∠AQP+∠ABQ=90°,根據(jù)角平分線的性質(zhì)得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,據(jù)此可得出結(jié)論.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某研究所將某種材料加熱到1000℃時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設(shè)降溫開始后經(jīng)過x min時,A、B兩組材料的溫度分別為yA℃、yB℃,yA、yB與x的函數(shù)關(guān)系式分別為yA=kx+b,yB= (x﹣60)2+m(部分圖象如圖所示),當(dāng)x=40時,兩組材料的溫度相同.
          (1)分別求yA、yB關(guān)于x的函數(shù)關(guān)系式;
          (2)當(dāng)A組材料的溫度降至120℃時,B組材料的溫度是多少?
          (3)在0<x<40的什么時刻,兩組材料溫差最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有實數(shù)根.
          (1)求m的值;
          (2)先作y=x2﹣(m+1)x+ (m2+1)的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;
          (3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求n2﹣4n的最大值和最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個圓錐的側(cè)面積是底面積的3倍,則這個圓錐側(cè)面展開圖的圓心角度數(shù)為(
          A.120°
          B.180°
          C.240°
          D.300°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
          (1)求此拋物線的解析式;
          (2)直接寫出點C和點D的坐標(biāo);
          (3)若點P在第一象限內(nèi)的拋物線上,且SABP=4SCOE , 求P點坐標(biāo). 注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(﹣

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知直線y=2x+m與拋物線y=ax2+ax+b有一個公共點M(1,0),且a<b.
          (Ⅰ)求拋物線頂點Q的坐標(biāo)(用含a的代數(shù)式表示);
          (Ⅱ)說明直線與拋物線有兩個交點;
          (Ⅲ)直線與拋物線的另一個交點記為N.
          (。┤舂1≤a≤﹣ ,求線段MN長度的取值范圍;
          (ⅱ)求△QMN面積的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將一張矩形紙片ABCD的邊BC斜著向AD邊對折,使點B落在AD邊上,記為B′,折痕為CE,再將CD邊斜向下對折,使點D落在B′C邊上,記為D′,折痕為CG,B′D′=2,BE= BC.則矩形紙片ABCD的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是(
          A.①③
          B.②③
          C.②④
          D.②③④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC.點E是y軸上任意一點記點E為(0,n).

          (1)求點D的坐標(biāo)及直線BC的解析式;
          (2)連結(jié)DE,將線段DE繞點D按順時針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
          (3)作點E關(guān)于AC的對稱點E’,當(dāng)n為何值時,A E’分別于AC,BC,AB垂直?

          查看答案和解析>>

          同步練習(xí)冊答案