日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

          1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.

          ①線段DGBE之間的數(shù)量關(guān)系是   

          ②直線DG與直線BE之間的位置關(guān)系是   ;

          2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時(shí),上述結(jié)論是否成立,并說(shuō)明理由.

          3)應(yīng)用:在(2)的情況下,連接BGDE,若AE1AB2,求BG2+DE2的值(直接寫出結(jié)果).

          【答案】1)①BEDG,②BEDG;(2)數(shù)量關(guān)系不成立,DG2BE,位置關(guān)系成立.理由見(jiàn)解析;(3BG2+DE225

          【解析】

          1)先判斷出△ABE≌△DAG,進(jìn)而得出BE=DG,∠ABE=ADG,再利用等角的余角相等即可得出結(jié)論;

          2)先利用兩邊對(duì)應(yīng)成比例夾角相等判斷出△ABE∽△DAG,得出∠ABE=ADG,再利用等角的余角相等即可得出結(jié)論;

          3)如圖④中,作ETADT,GHBABA的延長(zhǎng)線于H.設(shè)ET=x,AT=y.利用勾股定理,以及相似三角形的性質(zhì)即可解決問(wèn)題.

          1如圖中,

          四邊形ABCD和四邊形AEFG是正方形,

          AEAGABAD,BADEAG90°

          ∴∠BAEDAG,

          ABEDAG中,

          ,

          ∴△ABE≌△DAGSAS),

          BEDG;

          如圖2,延長(zhǎng)BEADT,交DGH

          知,ABE≌△DAG,

          ∴∠ABEADG

          ∵∠ATB+∠ABE90°,

          ∴∠ATB+∠ADG90°,

          ∵∠ATBDTH,

          ∴∠DTH+∠ADG90°,

          ∴∠DHB90°

          BEDG,

          故答案為:BEDGBEDG;

          2)數(shù)量關(guān)系不成立,DG2BE,位置關(guān)系成立.

          如圖中,延長(zhǎng)BEADT,交DGH

          四邊形ABCD與四邊形AEFG都為矩形,

          ∴∠BADDAG,

          ∴∠BAEDAG

          AD2AB,AG2AE

          ,

          ∴△ABE∽△ADG,

          ∴∠ABEADG,

          DG2BE,

          ∵∠ATB+∠ABE90°

          ∴∠ATB+∠ADG90°,

          ∵∠ATBDTH,

          ∴∠DTH+∠ADG90°,

          ∴∠DHB90°,

          BEDG;

          3)如圖中,作ETADT,GHBABA的延長(zhǎng)線于H.設(shè)ETx,ATy

          ∵∠GAH+DAG=90°,∠BAE+DAG=90°,

          ∴∠GAH=BAE

          又∵∠GHA=ATE=90°,

          AHG∽△ATE

          2,

          GH2x,AH2y,

          ∴4x2+4y24,

          x2+y21,

          BG2+DE2=(2x2+2y+22+x2+4y25x2+5y2+2025

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某市少年宮為小學(xué)生開(kāi)設(shè)了繪畫(huà)、音樂(lè)、舞蹈和跆拳道四類興趣班,為了解學(xué)生對(duì)這四類興趣班的喜愛(ài)情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了一幅不完整的統(tǒng)計(jì)表

          興趣班

          頻數(shù)

          頻率

          A

          0.35

          B

          18

          0.30

          C

          15

          D

          6

          合計(jì)

          1

          請(qǐng)你根據(jù)統(tǒng)計(jì)表中提供的信息回答下列問(wèn)題:

          1)統(tǒng)計(jì)表中的 ;

          2)根據(jù)調(diào)查結(jié)果,請(qǐng)你估計(jì)該市2000名小學(xué)生中最喜歡“繪畫(huà)”興趣的人數(shù);

          3)王姝和李要選擇參加興趣班,若他們每人從、、四類興趣班中隨機(jī)選取一類,請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求兩人恰好選中同一類的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)相等的點(diǎn)叫“相等點(diǎn)”,例如點(diǎn),都是“相等點(diǎn)”,顯然“相等點(diǎn)”有無(wú)數(shù)個(gè).

          1)若點(diǎn)是反比例函數(shù)為常數(shù),)的圖象上的“相等點(diǎn)”,求這個(gè)反比例函數(shù)的解析式;

          2)一次函數(shù)為常數(shù),)的圖象上存在“相等點(diǎn)”嗎?若存在,請(qǐng)用含的式子表示出“相等點(diǎn)”的坐標(biāo),若不存在,說(shuō)明理由;

          3)若二次函數(shù)為常數(shù))的圖象上有且只有一個(gè)“相等點(diǎn)”,令當(dāng)時(shí),求的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD內(nèi)一點(diǎn)E滿足EB=EC,EA=ED,∠BEC=∠AED=90°,ACDE于點(diǎn)F,交BD于點(diǎn)G

          (1)∠AGB的度數(shù)為

          (2)若四邊形AECD是平行四邊形

          ①求證:AC=AB

          ②若AE=2,求AF·CG的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),連接AE,CE

          1)求證:AE=CE;

          2)若BC=,BE=6,求tanBAE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某市為創(chuàng)建全國(guó)文明城市,開(kāi)展“美化綠化城市”活動(dòng),計(jì)劃經(jīng)過(guò)若干年使城區(qū)綠化總面積新增萬(wàn)平方米.自年初開(kāi)始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的倍,這樣可提前年完成任務(wù).

          1)問(wèn)實(shí)際每年綠化面積多少萬(wàn)平方米?

          2)為加大創(chuàng)城力度,市政府決定從年起加快綠化速度,要求不超過(guò)年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬(wàn)平方米?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某種蔬菜每千克售價(jià)y1(元)與銷售月份x之間的關(guān)系如圖1所示,每千克成本y2(元)與銷售月份x之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在對(duì)稱軸平行于y軸的同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1)

          1)求出y1x函數(shù)關(guān)系式;

          2)求出y2x函數(shù)關(guān)系式;

          3)設(shè)這種蔬菜每千克收益為w元,試問(wèn)在哪個(gè)月份出售這種蔬菜,w將取得最大值?并求出此最大值.(收益=售價(jià)﹣成本)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通遼市某中學(xué)為了了解學(xué)生大課間活動(dòng)情況,在七、八、九年級(jí)的學(xué)生中,分別抽取了相同數(shù)量的學(xué)生對(duì)你最喜歡的運(yùn)動(dòng)項(xiàng)目進(jìn)行調(diào)查(每人只能選一項(xiàng)),調(diào)查結(jié)果的部分?jǐn)?shù)據(jù)如下表(圖)所示,其中七年級(jí)最喜歡跳繩的人數(shù)比八年級(jí)多5人,九年級(jí)最喜歡排球的人數(shù)為10人.

          七年級(jí)學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目人數(shù)統(tǒng)計(jì)表

          項(xiàng)目

          排球

          籃球

          踢毽

          跳繩

          其他

          人數(shù)(人)

          7

          8

          14

             

          6

          請(qǐng)根據(jù)以上統(tǒng)計(jì)表(圖)解答下列問(wèn)題:

          1)本次調(diào)查共抽取了多少人?

          2)補(bǔ)全統(tǒng)計(jì)表和統(tǒng)計(jì)圖.

          3)該校有學(xué)生1800人,學(xué)校想對(duì)最喜歡踢毽子的學(xué)生每4人提供一個(gè)毽子,學(xué),F(xiàn)有124個(gè)毽子,能否夠用?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)準(zhǔn)備采購(gòu)一批特色商品,經(jīng)調(diào)查,用5000元采購(gòu)型商品的件數(shù)是用2000元采購(gòu)型商品的件數(shù)的2倍,一件型商品的進(jìn)價(jià)比一件型商品的進(jìn)價(jià)多10元.

          1)求一件,型商品的進(jìn)價(jià)分別為多少元?

          2)若該商場(chǎng)購(gòu)進(jìn),型商品共200件進(jìn)行試銷,其中型商品的件數(shù)不大于型商品的件數(shù),且不小于80件.已知型商品的售價(jià)為80/件,型商品的售價(jià)為60/件,且,型商品均全部售出.設(shè)購(gòu)進(jìn)型商品件,求該商場(chǎng)銷售完這批商品的利潤(rùn)之間的函數(shù)關(guān)系式,并寫出的取值范圍;

          3)在(2)的條件下,商場(chǎng)決定在試銷活動(dòng)中每售出一件型商品,就從一件型商品的利潤(rùn)中捐獻(xiàn)慈善資金,若該商場(chǎng)售完、型所有商品并捐獻(xiàn)資金后獲得的最大收益是4800元,求出值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案