日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2008•成都)如圖,已知⊙O的半徑為2,以⊙O的弦AB為直徑作⊙M,點C是⊙O優(yōu)弧上的一個動點(不與點A、點B重合).連接AC、BC,分別與⊙M相交于點D、點E,連接DE.若AB=2
          (1)求∠C的度數(shù);
          (2)求DE的長;
          (3)如果記tan∠ABC=y,=x(0<x<3),那么在點C的運動過程中,試用含x的代數(shù)式表示y.

          【答案】分析:(1)根據(jù)一條弧所對的圓周角等于它所對的圓心角的一半,連OM,OB,可求出∠BOM的度數(shù),∠C=∠BOM.
          (2)根據(jù)圓內(nèi)接四邊形一外角等于它的內(nèi)對角,可證明△CDE∽△CBA,兩三角形相似對應線段成比例,同時運用(1)中∠C=60°可得的值,能計算出DE的長.
          (3)根據(jù)直徑所對的圓周角是直角,連接AE,在直角三角形中用三角函數(shù)可求出y與x之間的關系.
          解答:解:(1)如圖:連接OB、OM.
          則在Rt△OMB中,∵OB=2,MB=,∴OM=1.
          ∵OM=,∴∠OBM=30°.
          ∴∠MOB=60°.
          連接OA.則∠AOB=120°.
          ∴∠C=∠AOB=60°.

          (2)∵四邊形ABED內(nèi)接于⊙M,
          ∴∠CBA+∠ADE=180°,
          ∵∠CDE+∠ADE=180°,
          ∴∠CDE=∠CBA,
          在△CDE和△CBA中,
          ∵∠CDE=∠CBA,∠ECD=∠ACB,
          ∴△CDE∽△CBA,∴
          連接BD,則∠BDC=∠ADB=90°.
          在Rt△BCD中,∵∠BCD=60°,∴∠CBD=30°.∴BC=2DC.
          .即
          ∴DE==×2=

          (3)連接AE.
          ∵AB是⊙M的直徑,∴∠AEB=∠AEC=90°.
          ,可得AD=x•DC,AC=AD+DC=(x+1)•DC.
          在Rt△ACE中,∵cos∠ACE=,sin∠ACE=,
          ∴CE=AC•cos∠ACE=(x+1)•DC•cos60°=;
          AE=AC•sin∠ACE=(x+1)•DC•sin60°=
          又由(2),知BC=2DC.
          ∴BE=BC-CE=
          在Rt△ABE中,tan∠ABC=,
          (0<x<3).
          點評:本題考查圓周角與圓心角之間的關系,園中相似三角形的運用,以及由直徑所對的圓周角是直角可得直角三角形,在直角三角形中對三角函數(shù)的靈活運用.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

          (2008•成都)如圖,在平面直角坐標系xOy中,△OAB的頂點A的坐標為(10,0),頂點B在第一象限內(nèi),且|AB|=3,sin∠OAB=
          (1)若點C是點B關于x軸的對稱點,求經(jīng)過O、C、A三點的拋物線的函數(shù)表達式;
          (2)在(1)中,拋物線上是否存在一點P,使以P、O、C、A為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由;
          (3)若將點O、點A分別變換為點Q(-2k,0)、點R(5k,0)(k>1的常數(shù)),設過Q、R兩點,且以QR的垂直平分線為對稱軸的拋物線與y軸的交點為N,其頂點為M,記△QNM的面積為S△QMN,△QNR的面積S△QNR,求S△QMN:S△QNR的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2008年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

          (2008•成都)如圖,在平面直角坐標系xOy中,△OAB的頂點A的坐標為(10,0),頂點B在第一象限內(nèi),且|AB|=3,sin∠OAB=
          (1)若點C是點B關于x軸的對稱點,求經(jīng)過O、C、A三點的拋物線的函數(shù)表達式;
          (2)在(1)中,拋物線上是否存在一點P,使以P、O、C、A為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由;
          (3)若將點O、點A分別變換為點Q(-2k,0)、點R(5k,0)(k>1的常數(shù)),設過Q、R兩點,且以QR的垂直平分線為對稱軸的拋物線與y軸的交點為N,其頂點為M,記△QNM的面積為S△QMN,△QNR的面積S△QNR,求S△QMN:S△QNR的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:選擇題

          (2008•成都)如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是( )

          A.12πcm2
          B.15πcm2
          C.18πcm2
          D.24πcm2

          查看答案和解析>>

          科目:初中數(shù)學 來源:2009年河北省廊坊市安次區(qū)九年級網(wǎng)絡試卷設計大賽數(shù)學試卷(3)(解析版) 題型:選擇題

          (2008•成都)如圖,小紅同學要用紙板制作一個高4cm,底面周長是6πcm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是( )

          A.12πcm2
          B.15πcm2
          C.18πcm2
          D.24πcm2

          查看答案和解析>>

          同步練習冊答案