日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為直線x=-1,B(1,0),C(0,-3).
          (1)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
          (2)在拋物線對稱軸上是否存在一點P,使點P到A、C兩點距離之差最大?若存在,求出點P坐標;若不存在,請說明理由.

          解:(1)∵拋物線的對稱軸為直線x=-1,經過點B(1,0),C(0,-3),
          ,
          解得,
          所以,二次函數(shù)的解析式是:y=x2+2x-3;

          (2)如圖,∵A、B兩點關于對稱軸x=-1對稱,
          ∴點A(-3,0),
          作直線AC交對稱軸于點P,點P即為所求,
          根據(jù)三角形的三邊關系,PA-PC<AC,
          所以,當點P為AC與對稱軸的交點時,點P到A、C兩點距離之差最大,
          設直線AC的解析式是:y=kx+b,

          解得,
          ∴設直線AC的解析式是:y=-x-3,
          當x=-1時,y=-2,
          ∴點P的坐標是(-1,-2).
          分析:(1)根據(jù)拋物線的對稱軸為x=-=-1,把點B、C的坐標代入拋物線解析式,然后組成關于a、b、c的三元一次方程組,求解即可得到拋物線解析式;
          (2)根據(jù)拋物線的對稱性求出點A的坐標,作直線AC,根據(jù)三角形的兩邊之差小于第三邊確定當點P為AC與對稱軸的交點時,點P到A、C兩點距離之差最大,然后利用待定系數(shù)法求一次函數(shù)解析式求出直線AC的解析式,再把x=-1代入求出y的值,即可得到點P的坐標.
          點評:本題是二次函數(shù)的綜合題型,主要涉及待定系數(shù)法求函數(shù)解析式(拋物線解析式與直線解析式),三角形的三邊關系的利用,綜合題但難度不大,比較簡單,(2)中判斷出點P的位置是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          已知點(2,8)在拋物線y=ax2上,則a的值為( 。
          A、±2
          B、±2
          2
          C、2
          D、-2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸的負半軸相交于D.
          (1)若拋物線y=ax2+bx+c經過B、C、D三點,求此拋物線的解析式,并寫出拋物線與圓A的另一個交點E的坐標;
          (2)若動直線MN(MN∥x軸)從點D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點,動點P同時從點C出發(fā),在線段OC上以每秒2個長度單位的速度向原點O運動,連接PM,設運動時間為t秒,當t為何值時,
          MN•OPMN+OP
          的值最大,并求出最大值;
          (3)在(2)的條件下,若以P、C、M為頂點的三角形與△OCD相似,求實數(shù)t的值.精英家教網

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          若(2,0)、(4,0)是拋物線y=ax2+bx+c上的兩個點,則它的對稱軸是直線( 。
          A、x=0B、x=1C、x=2D、x=3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在直角坐標平面內,O為原點,拋物線y=ax2+bx經過點A(6,0),且頂點B(m,6)在直線y=2x上.
          (1)求m的值和拋物線y=ax2+bx的解析式;
          (2)如在線段OB上有一點C,滿足OC=2CB,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
          ①求直線DC的解析式;
          ②如點M是直線DC上的一個動點,在x軸上方的平面內有另一點N,且以O、E、M、N為頂點的四邊形是菱形,請求出點N的坐標.(直接寫出結果,不需要過程.)
          精英家教網

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•陜西)如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
          (1)“拋物線三角形”一定是
          等腰
          等腰
          三角形;
          (2)若拋物線y=-x2+bx(b>0)的“拋物線三角形”是等腰直角三角形,求b的值;
          (3)如圖,△OAB是拋物線y=-x2+b′x(b′>0)的“拋物線三角形”,是否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案