日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,AD2 , AB1.將矩形ABCD對折,得到折痕MN;沿著CM折疊,點D的對應點為E,MEBC的交點為F;再沿著MP折疊,使得AMEM重合,折痕為MP,此時點B的對應點為G.下列結論:①CMP是直角三角形;②點CEG不在同一條直線上;③PCMP;④BP;⑤點FCMP外接圓的圓心,其中正確的個數(shù)為( 。

          A. 2B. 3C. 4D. 5

          【答案】B

          【解析】

          根據(jù)折疊的性質(zhì)得到∠DMC=∠EMC,∠AMP=∠EMP,于是得到∠PME+∠CME×180°=90°,求得△CMP是直角三角形;故①正確;根據(jù)平角的定義得到點C、E、G在同一條直線上,故②錯誤,AB1,則AD2,得到DMAD,根據(jù)勾股定理得到CM,根據(jù)射影定理得到CP,得到PCMP,故③錯誤;求得PBAB=,故④正確,根據(jù)平行線等分線段定理得到CFPF,求得點F是△CMP外接圓的圓心,故⑤正確.

          解:∵沿著CM折疊,點D的對應點為E,

          ∴∠DMC=∠EMC,

          ∵再沿著MP折疊,使得AMEM重合,折痕為MP,

          ∴∠AMP=∠EMP,

          ∵∠AMD180°,

          ∴∠PME+∠CME×180°=90°,

          ∴△CMP是直角三角形;故①正確;

          ∵沿著CM折疊,點D的對應點為E

          ∴∠D=∠MEC90°,

          ∵再沿著MP折疊,使得AMEM重合,折痕為MP,

          ∴∠MEG=∠A90°,

          ∴∠GEC180°,

          ∴點CE、G在同一條直線上,故②錯誤;

          AD2AB

          AB1,則AD2,

          ∵將矩形ABCD對折,得到折痕MN;

          DMAD

          CM,

          ∵∠PMC90°,MNPC,

          CM2CNCP,

          CP

          PNCPCN

          PM=

          ,

          PCMP,故③錯誤;

          PCAB=,

          PB-=

          故④正確,

          CDCE,EGAB,ABCD,

          CEEG,

          ∵∠CEM=∠G90°,

          FEPG,

          CFPF

          ∵∠PMC90°,

          CFPFMF

          ∴點F是△CMP外接圓的圓心,故⑤正確;

          故選:B

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,將線段AB繞點A逆時針旋轉60°得AC,連接BC,作ABC的外接圓O,點P為劣弧上的一個動點,弦AB、CP相交于點D.

          (1)求APB的大;

          (2)當點P運動到何處時,PDAB?并求此時CD:CP的值;

          (3)在點P運動過程中,比較PC與AP+PB的大小關系,并對結論給予證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,RtABC,A=90°,AB=3,AC=4,P為邊BC上一動點,PEABE,PFACF,EF的最小值為( )

          A. 2B. 2.4C. 2.5D. 2.6

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,矩形AOBC,A03)、B6,0),點EOB上,∠AEO=30°,點P從點Q(﹣4,0)出發(fā),沿x軸向右以每秒1個單位長的速度運動,運動時間為t秒.

          1)求點E的坐標;

          2)當△PAE是等腰三角形時,求t的值;

          3)以點P為圓心,PA為半徑的⊙P隨點P的運動而變化,當⊙P與四邊形AEBC的邊(或邊所在的直線)相切時,求t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應為____________________________ 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,中間用相同的白色正方形瓷磚,四周用相同的黑色長方形瓷磚鋪設矩形地面,請觀察圖形并解答下列問題.

          (1)問:依據(jù)規(guī)律在第6個圖中,黑色瓷磚多少塊,白色瓷磚有多少塊;

          (2)某新學校教室要裝修,每間教室面積為68m2 , 準備定制邊長為0.5米的正方形白色瓷磚和長為0.5米、寬為0.25米的長方形黑色瓷磚來鋪地面.按照此圖案方式進行裝修,瓷磚無須切割,恰好完成鋪設.已知白色瓷磚每塊20元,黑色瓷磚每塊10元,請問每間教室瓷磚共需要多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,BD 是菱形ABCD 的對角線,A30°

          (1)請用尺規(guī)作圖法,AB 的垂直平分線EF,垂足為E,AD F;(不要 求寫作法,保留作圖痕跡)

          (2)(1)的條件下,連接BF,求∠DBF 的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】楊老師為了了解所教班級學生課后復習的具體情況,對本班部分學生進行了一個月的跟蹤調(diào)查,然后將調(diào)查結果分成四類:A:優(yōu)秀;B:良好;C:一般;D:較差.并將調(diào)查結果繪制成以下兩幅不完整的統(tǒng)計圖.

          請根據(jù)統(tǒng)計圖解答下列問題:

          (1)本次調(diào)查中,楊老師一共調(diào)查了   名學生,其中C類女生有   名,D類男生有   名;

          (2)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

          (3)在此次調(diào)查中,小平屬于D類.為了進步,她請楊老師從被調(diào)查的A類學生中隨機選取一位同學,和她進行一幫一的課后互助學習.請求出所選的同學恰好是一位女同學的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀與計算,請閱讀以下材料,并完成相應的問題.

          角平分線分線段成比例定理,如圖1,在ABC中,AD平分∠BAC,則.下面是這個定理的部分證明過程.

          證明:如圖2,過CCEDA.交BA的延長線于E

          任務:

          1)請按照上面的證明思路,寫出該證明的剩余部分;

          2)如圖3,已知RtABC中,AB3,BC4,∠ABC90°,AD平分∠BAC,求ABD的周長.

          查看答案和解析>>

          同步練習冊答案