日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,以等腰ABC的一腰AC為直徑作⊙O,交底邊BC于點(diǎn)D,過(guò)點(diǎn)D作腰AB的垂線,垂足為E,交AC的延長(zhǎng)線于點(diǎn)F

          1)求證:EF是⊙O的切線;

          2)證明:∠CAD=∠CDF;

          3)若∠F30°,AD,求⊙O的面積.

          【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3π

          【解析】

          1)連接OD,AD,證點(diǎn)DBC的中點(diǎn),由三角形中位線定理證ODAB,可推出∠ODF90°,即可得到結(jié)論;

          2)由ODOC得到∠ODC=∠OCD,由∠CAD+OCD90°和∠CDF+ODC90°即可推出∠CAD=∠CDF;

          3)由∠F30°得到∠DOC60°,推出∠DAC30°,在RtADC中,由銳角三角函數(shù)可求出AC的長(zhǎng),推出⊙O的半徑,即可求出⊙O的面積.

          解:(1)證明:如圖,連接OD,AD,

          AC是直徑,

          ∴∠ADC90°,即ADBC,

          ABAC

          BDCD,

          AOCO,

          ODAB,

          FEAB,

          FEOD

          EF是⊙O的切線;

          2)∵ODOC

          ∴∠ODC=∠OCD,

          ∵∠ADC=∠ODF90°,

          ∴∠CAD+OCD90°,∠CDF+ODC90°,

          ∴∠CAD=∠CDF

          3)在RtODF中,∠F30°,

          ∴∠DOC90°30°60°,

          OAOD,

          ∴∠OAD=∠ODADOC30°,

          RtADC中,

          AC2,

          r1,

          SOπ12π,

          ∴⊙O的面積為π

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的限距點(diǎn)的定義如下:若P′為直線PC與⊙C的一個(gè)交點(diǎn),滿足r≤PP′≤2r,則稱P′為點(diǎn)P關(guān)于⊙C的限距點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的限距點(diǎn)P′的示意圖.

          (1)當(dāng)⊙O的半徑為1時(shí).

          ①分別判斷點(diǎn)M(34),N(0),T(1)關(guān)于⊙O的限距點(diǎn)是否存在?若存在,求其坐標(biāo);

          ②點(diǎn)D的坐標(biāo)為(2,0)DE,DF分別切⊙O于點(diǎn)E,點(diǎn)F,點(diǎn)P在△DEF的邊上.若點(diǎn)P關(guān)于⊙O的限距點(diǎn)P′存在,求點(diǎn)P′的橫坐標(biāo)的取值范圍;

          (2)保持(1)D,E,F三點(diǎn)不變,點(diǎn)P在△DEF的邊上沿E→F→D→E的方向運(yùn)動(dòng),⊙C的圓心C的坐標(biāo)為(1,0),半徑為r,請(qǐng)從下面兩個(gè)問(wèn)題中任選一個(gè)作答.

          問(wèn)題1:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′存在,且P′隨點(diǎn)P的運(yùn)動(dòng)所形成的路徑長(zhǎng)為πr,則r的最小值為__________.

          問(wèn)題2:若點(diǎn)P關(guān)于⊙C的限距點(diǎn)P′不存在,則r的取值范圍為_________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(﹣32),B0,4),C0,2).

          1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的A1B1C1,平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對(duì)應(yīng)的A2B2C2;

          2)若將A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC△DEF的頂點(diǎn)都在格點(diǎn)上,結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

          1)畫出△ABC向上平移4個(gè)單位長(zhǎng)度后所得到的△A1B1C1;

          2)畫出△DEF繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°后所得到的△D1E1F1

          3△A1B1C1△D1E1F1組成的圖形是軸對(duì)稱圖形嗎?如果是,請(qǐng)直接寫出對(duì)稱軸所在直線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校數(shù)學(xué)課外小組,在坐標(biāo)紙上為某濕地公園的一塊空地設(shè)計(jì)植樹(shù)方案如下:第k棵樹(shù)種植在點(diǎn)Pkxk,yk)處,其中x11y11,且k≥2時(shí),[a]表示非負(fù)實(shí)數(shù)a的整數(shù)部分,例如[2.3]2,[0.5]0.按此方案,第2019棵樹(shù)種植點(diǎn)的坐標(biāo)應(yīng)為( 。

          A.(62020)B.(2019,5)C.(3,403)D.(404,4)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖示,的直徑,點(diǎn)是半圓上的一動(dòng)點(diǎn)(不與重合),弦平分,過(guò)點(diǎn)交射線于點(diǎn).

          1)求證:相切:

          2)若,,求長(zhǎng);

          3)若,長(zhǎng)記為長(zhǎng)記為,求之間的函數(shù)關(guān)系式,并求出的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為測(cè)量觀光塔高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,請(qǐng)根據(jù)以上觀測(cè)數(shù)據(jù)求觀光塔的高.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知直線與兩坐標(biāo)軸分別交于AB兩點(diǎn),拋物線 經(jīng)過(guò)點(diǎn)AB,點(diǎn)P為直線AB上的一個(gè)動(dòng)點(diǎn),過(guò)Py軸的平行線與拋物線交于C點(diǎn), 拋物線與x軸另一個(gè)交點(diǎn)為D

          1)求圖中拋物線的解析式;

          2)當(dāng)點(diǎn)P線段AB上運(yùn)動(dòng)時(shí),求線段PC的長(zhǎng)度的最大值;

          3)在直線AB上是否存在點(diǎn)P,使得以O、A、P、C為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)點(diǎn)P 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中, ,點(diǎn)在邊上移動(dòng)(點(diǎn)不與點(diǎn), 重合),滿足,且點(diǎn)分別在邊、上.

          )求證:

          )當(dāng)點(diǎn)移動(dòng)到的中點(diǎn)時(shí),求證: 平分

          查看答案和解析>>

          同步練習(xí)冊(cè)答案