日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】綜合與探究

          問題情境:

          (1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關(guān)系是   ,位置關(guān)系是   

          合作探究:

          (2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.

          (3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.

          【答案】(1)FG=FH,F(xiàn)GFH;(2)(1)中結(jié)論成立,證明見解析;

          (3)(1)中的結(jié)論成立,結(jié)論是FH=FG,F(xiàn)HFG.理由見解析.

          【解析】試題分析:1)證BE=AD,根據(jù)三角形的中位線推出FH=AD,FHAD,FG=BE,FGBE 即可推出答案;
          2)證△ACD≌△BCE,推出AD=BE根據(jù)三角形的中位線定理即可推出答案;
          3)連接ADBE,根據(jù)全等推出AD=BE,根據(jù)三角形的中位線定理即可推出答案.

          試題解析:(1)CE=CD,AC=BC,

          BE=AD,

          FDE的中點,HAE的中點,GBD的中點,

          FH=AD,FHAD,FG=BE,FGBE,

          FH=FG,

          ADBE,

          FHFG,

          故答案為:相等,垂直。

          (2)答:成立,

          證明:∵CE=CD, AC=BC,

          ∴△ACD≌△BCE,

          AD=BE

          (1)知:FH=AD,FHAD,FG=BE,FGBE,

          FH=FGFHFG,

          (1)中的猜想還成立.

          (3)答:成立,結(jié)論是FH=FGFHFG.

          連接AD,BE,兩線交于Z,ADBCX,

          (1)可證

          FH=AD,FHAD,FG=BE,FGBE,

          ∵三角形ECD、ACB是等腰直角三角形,

          CE=CD,AC=BC,

          ∴∠ACD=BCE,

          在△ACD和△BCE

          ∴△ACD≌△BCE,

          AD=BEEBC=DAC,

          CXA=DXB

          ADBE,

          FHAD,FGBE,

          FHFG

          FH=FG,FHFG,

          結(jié)論是FH=FG,FHFG

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點A(m,6),B(n,1)在反比例函數(shù)y=的圖象上,ADx軸于點D,BCx軸于點C,點ECD上,CD=5,ABE的面積為10,則點E的坐標是(  )

          A. (3,0) B. (4,0) C. (5,0) D. (6,0)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為(  )

          A. 80° B. 90° C. 100° D. 130°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,BC=24cm,PQ,M,N分別從A,BC,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.

          已知在相同時間內(nèi),若BQ=x cmx≠0),則AP=2x cm,CM=3x cmDN=x2cm

          1)當x為何值時,以P、N兩點重合?

          2)問Q、M兩點能重合嗎?若Q、M兩點能重合,則求出相應的x的值;若Q、M兩點不能重合,請說明理由.

          3)當x為何值時,以P,Q,MN為頂點的四邊形是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】綠水青山就是金山銀山,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

          村莊

          清理養(yǎng)魚網(wǎng)箱人數(shù)/

          清理捕魚網(wǎng)箱人數(shù)/

          總支出/

          A

          15

          9

          57000

          B

          10

          16

          68000

          (1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;

          (2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖(1),在三角形中,,,邊繞點按逆時針方向旋轉(zhuǎn)一周回到原來的位置(即旋轉(zhuǎn)角),在旋轉(zhuǎn)過程中(圖2),當時,旋轉(zhuǎn)角為________度;當所在直線垂直于時,旋轉(zhuǎn)角為__________度.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)P,8),Q4,m)兩點.

          1)分別求出這兩個函數(shù)的表達式;

          2)請直接寫出不等式k1x+b的解集.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】把幾個數(shù)用大括號圍起來,中間用逗號隔開.如:,我們稱之為集合,其中的數(shù)稱其為集合的元素.如果一個集合滿足:當有理數(shù)a是集合的元素時,有理數(shù)-4-a也必是這個集合的元素,這樣的集合我們稱為友好集合.

          (1)請你判斷集合,是不是友好集合?

          (2)請你寫出滿足條件的兩個友好集合.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中, ,垂足為,過的⊙O分別與交于點,連接

          (1)求證:;

          (2)當與⊙O相切時,求⊙O的面積.

          查看答案和解析>>

          同步練習冊答案