日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在平面直角坐標系xOy中,直線y1=-x上一點A(-1,1),過點A作AB⊥x軸于B.在圖中畫圖探究:將一把三角尺的直角頂點P放在線段AO上滑行,直角的一邊始終經(jīng)過點B,另一邊與y軸相交于點Q.

          (1)判斷線段PQ與線段PB的數(shù)量關(guān)系,就點P運動到圖1所示位置時證明你的結(jié)論;
          (2)當(dāng)點P在線段AO上滑行時,△POQ是否可能成為等腰三角形,如果可能,求出所有能使△POQ成為等腰三角形的點P的坐標;如果不可能,請說明理由;
          (3)猜想OB、OQ與OP之間的數(shù)量關(guān)系:______.

          解:(1)PQ=PB.
          過點P作PC⊥x軸于點C,PD⊥y軸于點D.
          ∵點P在直線y1=-x上,
          ∴PC=PD.
          ∵∠PCO=∠COD=∠ODP=90°,
          ∴∠CPD=90°
          又∵∠BPQ=90°,
          ∴∠BPC=∠QPD,
          ∵∠PCB=∠PDQ=90°,
          ∴△PCB≌△PDQ
          ∴PB=PQ

          (2)△POQ可能成為等腰三角形、設(shè)P(x,x)
          ①當(dāng)點P與點A重合時,PQ=QO,△POQ是等腰三角形,此時P(1,1)
          ②當(dāng)點Q在x軸負半軸上,且OP=OQ時,△POQ是等腰三角形(如圖)
          此時,QN=PM=1-x,ON=x,
          所以O(shè)Q=QN-ON=1-2x,OP=x,
          當(dāng)12x=x時,解得,
          ∴P(

          (3)

          分析:(1)PQ=PC,過點P作x軸,y軸的垂線PC,PD,證明△PCB≌△PDQ即可;
          (2)①當(dāng)點P與點A重合時,PQ=QO,△POQ是等腰三角形,此時P(-1,1);
          ②當(dāng)點Q在x軸負半軸上,且OP=OQ時,△POQ是等腰三角形,即可求得ON的長,得到P的坐標;
          (3)根據(jù)(2)中,三條線段的大小關(guān)系即可猜想.
          點評:本題綜合考查了等腰三角形的性質(zhì),以及三角形的全等,考查了同學(xué)們綜合運用所學(xué)知識的能力,是一道綜合性較好的題目.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點A′的坐標,記作
          (2,2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標系中,將一塊腰長為2
          2
          cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
          (1)點A的坐標為
          (-3,2
          2
          (-3,2
          2
          ,點B的坐為
          (-3-2
          2
          ,0)
          (-3-2
          2
          ,0)

          (2)求以原點O為頂點且過點A的拋物線的解析式;
          (3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

          學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

          (1)按照這種規(guī)定填寫下表:

          (2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

          (3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時,s的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

          閱讀下面的材料:

          小明在研究中心對稱問題時發(fā)現(xiàn):

          如圖1,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

          如圖2,當(dāng)點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

          (1)請在圖2中畫出點、, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

          (2)如圖3,在平面直角坐標系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
          (1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
          (2)請寫出平移后點A′的坐標,記作______.

          查看答案和解析>>

          同步練習(xí)冊答案