日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】感知:如圖①,ABC,C=90°,AC=BC,D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).連接AD,AD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DE,連接BE,過點(diǎn)DDFACAB于點(diǎn)F,可知ADF≌△EDB,則∠ABE的大小為________.

          探究:如圖②ABC,C=α(0°<α<90°),AC=BC,D是邊BC上一點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),連接AD,AD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)α,得到DE,連接BE,求證:∠ABE=α.

          應(yīng)用:設(shè)圖②中的α=60°,AC=2.當(dāng)ABE是直角三角形時(shí),AE=________.

          【答案】感知ABE=90°;探究:證明見解析;應(yīng)用:AE=.

          【解析】

          感知:根據(jù)等腰直角三角形的性質(zhì)可得∠CAB=∠CBA=45°,由平行線的性質(zhì)可得∠FDB=∠C=90°,即可得∠AFD=∠FDB+∠FBD=135°;已知△ADF≌△EDB,根據(jù)全等三角形的性質(zhì)可得∠DBE=∠AFD=135°,即可求得∠ABE=90°;探究:過點(diǎn)DDF∥ACAB于點(diǎn)F(如圖),則∠DFB=∠CAB,∠FDB=∠C=α,已知CA=CB,根據(jù)等腰三角形的性質(zhì)可得∠CAB=∠CBA,由等量代換可得∠DFB=∠DBF;根據(jù)等腰三角形的判定可得DF=DB,再由旋轉(zhuǎn)的性質(zhì)可知∠ADF=∠EDB,即可證明△ADF≌△EDB,由全等三角形的性質(zhì)可得∠DBE=∠AFD, 即可得∠ABE=∠FDB=∠C=α;應(yīng)用:已知α=60°,CA=CB,根據(jù)等邊三角形的判定方法可得△ABC是等邊三角形,即可得BA=AC=2,又因∠ABE=C=60°,AEB=90°,即可求得AE= .

          感知:

          ∵∠C=90°,AC=BC,

          ∴∠CAB=CBA=45°,

          DFAC,

          ∴∠FDB=C=90°,

          ∴∠AFD=FDB+FBD=135°,

          ∵△ADF≌△EDB,

          ∴∠DBE=AFD=135°,

          ∴∠ABE=135°-45°=90°.

          故答案為:90°.

          探究:證明:如圖,

          過點(diǎn)DDFACAB于點(diǎn)F,則∠DFB=CAB,FDB=C=α,

          CA=CB,

          ∴∠CAB=CBA,

          ∴∠DFB=DBF,

          DF=DB,

          由旋轉(zhuǎn)變換的性質(zhì)可知,∠ADF=EDB,

          ADFEDB中,

          ∴△ADF≌△EDB,

          ∴∠DBE=AFD,

          DBE=ABE+∠ABC,AFD=ABC+∠FDB,

          ABE=∠FDB,

          ∴∠ABE=C=α.

          應(yīng)用:∵α=60°,CA=CB,

          ∴△ABC是等邊三角形,

          BA=AC=2,

          ∵∠ABE=C=60°,AEB=90°,

          AE=.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AP=DP,DE=DF,DEAB于E,DFAC于F,則下列結(jié)論:.AD平分BAC;.BED≌△FPD;.DPAB;.DF是PC的垂直平分線.其中正確的是= _________ .(寫序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測得點(diǎn)B和點(diǎn)C的仰角分別是45°65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,E,F(xiàn)分別是正方形ABCD的邊CD,AD上的點(diǎn),CE=DF,AE,BF相交于點(diǎn)O.下列結(jié)論:①AE=BF;AEBF;③△ABFDAE成中心對稱其中,正確的結(jié)論有( )

          A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC,AB=AC,BAC=50°,PBC邊上一點(diǎn)ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)50°,點(diǎn)P旋轉(zhuǎn)后的對應(yīng)點(diǎn)為點(diǎn)P′.

          (1)畫出旋轉(zhuǎn)后的三角形;

          (2)連接PP′,若∠BAP=20°,求∠PP′C的度數(shù)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)D為AB邊上的中點(diǎn),點(diǎn)前EAD的中點(diǎn),為正三角形,給出下列結(jié)論,①,,④若,點(diǎn)上一動(dòng)點(diǎn),點(diǎn)、邊的距離分別為,,則的最小值是3.其中正確的結(jié)論是_________(填寫正確結(jié)論的番號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列四個(gè)圖案中,是軸對稱圖形的是(

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線段BC上運(yùn)動(dòng)(點(diǎn)D不與點(diǎn)BC重合),連接AD,作∠ADE=40°,DE交線段AC于點(diǎn)E

          1)當(dāng)∠BDA=115°時(shí),∠EDC=______°,∠AED=______°;

          2)線段DC的長度為何值時(shí),ABD≌△DCE,請說明理由;

          3)在點(diǎn)D的運(yùn)動(dòng)過程中,ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB90°,BC30cmAC40cm,點(diǎn)D在線段AB上,從點(diǎn)B出發(fā),以2cm/s的速度向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒。

          1)點(diǎn)D在運(yùn)動(dòng)t秒后,BD cm(用含有t的式子表示)

          2ABcmAB邊上的高為cm;

          3)點(diǎn)D在運(yùn)動(dòng)過程中,當(dāng)△BCD為等腰三角形時(shí),求t的值.

          查看答案和解析>>

          同步練習(xí)冊答案