日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:在梯形ABCD中,AD∥BC,AB=DC,E、F分別是AB和BC邊上的點(diǎn).
          (1)如圖1,以EF為對稱軸翻折梯形ABCD,使點(diǎn)B與點(diǎn)D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
          (2)如圖2,連接EF并延長與DC的延長線交于點(diǎn)G,如果FG=k•EF(k為正數(shù)).
          ①當(dāng)K=1時(shí),試猜想BE與CG有何數(shù)量關(guān)系?寫出你的結(jié)論并說明理由.
          ②當(dāng)K=2時(shí),試猜想BE與CG有何數(shù)量關(guān)系是______;(直接寫出你的結(jié)論)
          ③當(dāng)K=n時(shí),試猜想BE與CG有何數(shù)量關(guān)系是______.(直接寫出你的結(jié)論).

          解:(1)∵梯形ABCD為等腰梯形,且DF⊥BC,
          ∴CF==2,
          由折疊的性質(zhì),得DF=BF=BC-CF=6,
          ∴S梯形ABCD=×(AD+BC)×DF=×(4+8)×6=36;

          (2)過E作EH∥CG交BC于H點(diǎn),則△EFH∽△GFC,
          ∴∠EHB=∠DCB=∠B,
          ∴BE=EH,
          由△EFH∽△GFC,得==
          ∴CG=k•EH=k•BE,
          故答案為:①當(dāng)k=1時(shí),CG=BE,②當(dāng)k=2時(shí),CG=2BE,③當(dāng)k=n時(shí),CG=nBE.
          分析:(1)由于梯形ABCD為等腰梯形,且DF⊥BC,故CF=,由折疊的性質(zhì)可知DF=BF=BC-CF,可求梯形的高,再計(jì)算梯形的面積;
          (2)過E作EH∥CG交BC于G點(diǎn),可證△EFH∽△GFC,利用相似三角形對應(yīng)邊的比相等求解.
          點(diǎn)評:本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:在梯形ABCD中,AD∥BC,點(diǎn)E在AB上,點(diǎn)F在DC上,且AD=a,BC=b.
          (1)如果點(diǎn)E、F分別為AB、DC的中點(diǎn),如圖.求證:EF∥BC,且EF=
          a+b
          2
          ;
          (2)如果
          AE
          EB
          =
          DF
          EC
          =
          m
          n
          ,如圖,判斷EF和BC是否平等,并用a、b、m、n的代數(shù)式表示EF.請證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在梯形ABCD中,AD∥BC,AB=DC,E,F(xiàn)分別是AB和BC邊上的點(diǎn).
          (1)如圖①,以EF為對稱軸翻折梯形ABCD,使點(diǎn)B與點(diǎn)D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面積S梯形ABCD的值;
          (2)如圖②,連接EF并延長與DC的延長線交于點(diǎn)G,如果FG=k•EF(k為正數(shù)),試猜想BE與CG有何數(shù)量關(guān)系寫出你的結(jié)論并證明之.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知:在梯形ABCD中,AD∥BC,AD=3,BC=5,點(diǎn)E在AB上,且AE:EB=2:3,過點(diǎn)E作EF∥BC交CD于F,求EF的長?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
          45
          ,點(diǎn)E是AB邊上一點(diǎn),BE=3,點(diǎn)P是BC邊上的一動(dòng)點(diǎn),連接EP,作∠EPF,使得∠EPF=∠B,射線PF與AD邊交于點(diǎn)F,與CD的延長線交于點(diǎn)G,設(shè)BP=x,DF=y.
          (1)求BC的長;
          (2)試求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
          (3)連接EF,如果△PEF是等腰三角形,試求BP的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,點(diǎn)E、F分別是BC和DC的中點(diǎn),連接AE、EF和BD,AE和BD相交于點(diǎn)G.
          (1)求證:四邊形AECD是平行四邊形;
          (2)求證:四邊形EFDG是菱形.

          查看答案和解析>>

          同步練習(xí)冊答案