【題目】如圖,拋物線(xiàn)與直線(xiàn)
相交于
,
兩點(diǎn),且拋物線(xiàn)經(jīng)過(guò)點(diǎn)
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A. 點(diǎn)B重合),過(guò)點(diǎn)P作直線(xiàn)PD⊥x軸于點(diǎn)D,交直線(xiàn)AB于點(diǎn)E.當(dāng)PE=2ED時(shí),求P點(diǎn)坐標(biāo);
(3)點(diǎn)P是直線(xiàn)上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),求的面積最大時(shí)的P點(diǎn)坐標(biāo).
【答案】(1)y=x2+4x+5(2)P點(diǎn)坐標(biāo)為(2,9)或(6,7);(3)P(,
).
【解析】
(1)先由點(diǎn)B在直線(xiàn)y=x+1上求出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求解可得;
(2)可設(shè)出P點(diǎn)坐標(biāo),則可表示出E、D的坐標(biāo),從而可表示出PE和ED的長(zhǎng),由條件可知到關(guān)于P點(diǎn)坐標(biāo)的方程,則可求得P點(diǎn)坐標(biāo);
(3)連接AP,BP,根據(jù)S= S
+ S
=
,根據(jù)二次函數(shù)性質(zhì)得到最大值,即可求出P點(diǎn)坐標(biāo).
解:(1)∵點(diǎn)B(4,m)在直線(xiàn)y=x+1上,
∴m=4+1=5,
∴B(4,5),
把A、B、C三點(diǎn)坐標(biāo)代入拋物線(xiàn)解析式可得
,
解得
,
∴拋物線(xiàn)解析式為y=x2+4x+5;
(2)設(shè)P(x,x2+4x+5),則E(x,x+1),D(x,0),
則PE=|x2+4x+5(x+1)|=|x2+3x+4|,DE=|x+1|,
∵PE=2ED,
∴|x2+3x+4|=2|x+1|,
當(dāng)x2+3x+4=2(x+1)時(shí),解得x=1或x=2,但當(dāng)x=1時(shí),P與A重合不合題意,舍去,
∴P(2,9);
當(dāng)x2+3x+4=2(x+1)時(shí),解得x=1或x=6,但當(dāng)x=1時(shí),P與A重合不合題意,舍去,
∴P(6,7);
綜上可知P點(diǎn)坐標(biāo)為(2,9)或(6,7);
(3)∵點(diǎn)P是直線(xiàn)上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),
設(shè)(x,x2+4x+5),則E(x,x+1),D(x,0),
則PE=x2+4x+5(x+1)=x2+3x+4,
∴= S
+ S
=
=
=
∴當(dāng)x=,
的面積最大
把x=代入y=x2+4x+5,解得y=
故P(,
).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)
、
.
(1)求拋物線(xiàn)的解析式,并寫(xiě)出頂點(diǎn)的坐標(biāo);
(2)若點(diǎn)在拋物線(xiàn)上,且點(diǎn)
的橫坐標(biāo)為8,求四邊形
的面積
(3)定點(diǎn)在
軸上,若將拋物線(xiàn)的圖象向左平移2各單位,再向上平移3個(gè)單位得到一條新的拋物線(xiàn),點(diǎn)
在新的拋物線(xiàn)上運(yùn)動(dòng),求定點(diǎn)
與動(dòng)點(diǎn)
之間距離的最小值
(用含
的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線(xiàn)段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過(guò)點(diǎn)E、F分別作BC、AC的垂線(xiàn)相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=
;③AF+BE=EF;④MGMH=
,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與直線(xiàn)
分別相交于
,
兩點(diǎn),且此拋物線(xiàn)與
軸的一個(gè)交點(diǎn)為
,連接
,
.已知
,
.
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)對(duì)稱(chēng)軸上找一點(diǎn)
,使
的值最大,并求出這個(gè)最大值;
(3)點(diǎn)為
軸右側(cè)拋物線(xiàn)上一動(dòng)點(diǎn),連接
,過(guò)點(diǎn)
作
交
軸于點(diǎn)
,問(wèn):是否存在點(diǎn)
使得以
,
,
為頂點(diǎn)的三角形與
相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖像經(jīng)過(guò)點(diǎn)(3,2)
(1)求這個(gè)函數(shù)的解析式,并寫(xiě)出頂點(diǎn)坐標(biāo);
(2)求使的
的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】投資8000元圍成一個(gè)矩形菜園(如圖),其中一邊靠墻,另外三邊選用不同材料建造,墻長(zhǎng)35m,平行于墻的邊的費(fèi)用為100元/m,垂直于墻的邊的費(fèi)用為250元/m,設(shè)平行的墻的邊長(zhǎng)為xm.
(1)設(shè)垂直于墻的一邊長(zhǎng)為ym,直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)若菜園面積為300m2,求x的值;
(3)求菜園的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是邊長(zhǎng)為6的等邊△ABC三邊中垂線(xiàn)的交點(diǎn),將△ABC繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)180°,得到△A1B1C1,則圖中陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD為角平分線(xiàn),DE⊥AB,垂足為E.
(1)寫(xiě)出圖中一對(duì)全等三角形和一對(duì)相似比不為1的相似三角形;
(2)選擇(1)中一對(duì)加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com