日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知ABC是等腰直角三角形,∠A90°,D是腰AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)CCEBD,交BD的延長(zhǎng)線于點(diǎn)E,如圖①.

          1)求證:ADCDBDDE;

          2)若BD是邊AC的中線,如圖②,求的值.

          【答案】(1)見解析;(2)

          【解析】

          1)由CEBD得∠CED=90°=A,由對(duì)頂角相等可得∠ADB=EDC,可證△ABD∽△ECD,利用相似三角形的性質(zhì)即可證明;

          2)設(shè)CD=AD=a,則AB=AC=2a,由勾股定理求得BD,再根據(jù)△ABD∽△ECD,利用相似三角形的性質(zhì)解答即可;

          解:(1)證明:∵CE⊥BD

          ∴∠CED90°∠A

          ∵∠ADB∠EDC

          ∴△ABD∽△ECD

          ∴ADCDBDDE;

          2)如圖,設(shè)CDADa,則ABAC2a

          Rt△ABD中,由勾股定理得:BDa

          ∵△ABD∽△ECD

          ∴CE

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)ab為常數(shù),且)與反比例函數(shù)m為常數(shù),且)的圖象交于點(diǎn)A﹣2,1)、B1,n).

          1)求反比例函數(shù)和一次函數(shù)的解析式;

          2)連結(jié)OA、OB,求△AOB的面積;

          3)直接寫出當(dāng)時(shí),自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面內(nèi)容,并解答問題:

          楊輝和他的一個(gè)數(shù)學(xué)問題

          我國古代對(duì)代數(shù)的研究,特別是對(duì)方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.

          楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個(gè)問題(選自楊輝所著《田畝比類乘除捷法》):

          直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長(zhǎng)一十二步(寬比長(zhǎng)少一十二步),問闊及長(zhǎng)各幾步.

          請(qǐng)你用學(xué)過的知識(shí)解決這個(gè)問題.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形內(nèi)接于是對(duì)角線。點(diǎn)E的延長(zhǎng)線上,且

          1)判斷的位置關(guān)系,并說明理由;

          2的延長(zhǎng)線交于點(diǎn)F,若,,,求的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC是等邊三角形,以AB為直徑作⊙O,交BC邊于點(diǎn)D,交AC邊于點(diǎn)F,作DE⊥AC于點(diǎn)E

          1)求證:DE⊙O的切線;

          2)若△ABC的邊長(zhǎng)為4,求EF的長(zhǎng)度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC∠AOC=90°∠BCO=45°,BC=,點(diǎn)C的坐標(biāo)為(-18,0.

          1)求點(diǎn)B的坐標(biāo);

          2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DBCB的延長(zhǎng)線于G

          1)求證:△ADE≌△CBF

          2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.

          (1)能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說明;若不能,請(qǐng)說明理由.

          (2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形中,,對(duì)角線,相交于點(diǎn),動(dòng)點(diǎn)由點(diǎn)出發(fā),沿向點(diǎn)運(yùn)動(dòng).設(shè)點(diǎn)的運(yùn)動(dòng)路程為,的面積為的函數(shù)關(guān)系圖象如圖所示,則邊的長(zhǎng)為__________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案