日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,等邊三角形ABD和等邊三角形CBD的邊長均為a,現(xiàn)把它們拼合起來,E是AD上異于A、D兩點的一動點,F(xiàn)是CD上一動點,滿足AE+CF=a.則△BEF的形狀如何?
          分析:根據(jù)等邊三角形各邊長相等和內(nèi)角為60°的性質(zhì),可以求得△BDE≌△BCF,即可求得∠FBD+∠DBE=60°,根據(jù)一個內(nèi)角為60°的等腰三角形可以判定為等邊三角形,即可解題.
          解答:解:△BEF為正三角形
          證明:∵AE+CF=a,AE+ED=a,
          ∴DE=CF,
          在△BDE和△BCF中,
          BD=BC
          ∠BCF=∠BDE=60°
          DE=CF

          ∴△BDE≌△BCF,
          ∴BE=BF,∠CBF=∠DBE,
          又∵∠CBF+∠FBD=60°,
          ∴∠FBD+∠DBE=60°,
          ∴△BEF為等邊三角形.
          點評:本題考查了全等三角形的證明和全等三角形對應(yīng)邊、對應(yīng)角相等的性質(zhì),考查了等邊三角形的判定,本題中求證△BDE≌△BCF是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,等邊三角形AOB的頂點A在反比例函數(shù)y=
          3
          x
          (x>0)的圖象上,點B在x軸上.
          (1)求點B的坐標(biāo);
          (2)求直線AB的函數(shù)表示式;
          (3)在y軸上是否存在點P,使△OAP是等腰三角形?若存在,直接把符合條件的點P的坐標(biāo)都寫出來;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,等邊三角形ABC中,D、E分別為AB、BC邊上的兩動點,且總使AD=BE,AE與CD交于點F,AG⊥CD于點G,則
          FG
          AF
          =(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,等邊三角形ABC的邊長為6,點D,E分別在邊AB,AC上,且AD=AE=2.若點F從點B開始以每秒1個單位長的速度沿射線BC方向運(yùn)動,設(shè)點F運(yùn)動的時間為t秒.當(dāng)t>0時,直線FD與過點A且平行于BC的直線相交于點G,GE的延長線與BC的延長線相交于點H,AB與GH相交于點O.
          (1)設(shè)△EGA的面積為S,寫出S與t的函數(shù)關(guān)系式;
          (2)當(dāng)t為何值時,AB⊥GH.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,等邊三角形ABC的邊長為a,若D、E、F、G分別為AB、AC、CD、BF的中點,則△BEG的面積是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:013

          已知:如圖,在等邊三角形AB,AD=BE=CF,D,E,F不是各邊的中點,AE,BF,CD分別交于P,M,N在每一組全等三角形中,有三個三角形全等,在圖中全等三角形的組數(shù)是

          [    ]

          A.5   B.4    C.3   D.2

           

          查看答案和解析>>

          同步練習(xí)冊答案