日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 59、已知:三角形ABC內(nèi)接于⊙O,過點A作直線EF.
          (1)如圖1,AB為直徑,要使得EF是⊙O的切線,還需添加的條件是?(只須寫出三種情況)
          (2)如圖2,AB為非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.
          分析:(1)要使得EF是⊙O的切線,只需有EF⊥AB即可;因此添加的條件能夠得出EF⊥AB即可.
          (2)連接AO并延長AO交⊙O于H,連接HC;根據(jù)角與角的相等及互余關(guān)系,可得HA⊥EF;故EF是⊙O的切線.
          解答:解:(1)①∠CAE=∠B,
          ②AB⊥FE,
          ③∠BAC+∠CAE=90°(或∠BAC與∠CAE互余),
          ④∠C=∠FAB,
          ⑤∠EAB=∠FAB,
          任選三個即可.(2分)(6分)

          證明:(2)連接AO并延長AO交⊙O于H,連接HC;
          ∴∠H=∠B,(7分)
          ∵AH是直徑,
          ∴∠ACH=90°.
          ∵∠B=∠CAE,
          ∴∠CAE+∠HAC=90°,(9分)
          ∴HA⊥EF.
          ∵OA是⊙O的半徑,
          ∴EF是⊙O的切線.(10分)
          點評:本題考查的是切線的判定與應(yīng)用,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、已知:三角形ABC內(nèi)接于⊙O,過點A作直線EF.
          (1)如圖(1),AB為直徑,要使得EF是⊙O的切線,只需保證∠CAE=∠
          ABC
          ,并證明之;
          (2)如圖(2),AB為⊙O非直徑的弦,(1)中你所添出的條件仍成立的話,EF還是⊙O的切線嗎?若是,寫出證明過程;若不是,請說明理由并與同學(xué)交流.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知等腰三角形ABC內(nèi)接于半徑為5的⊙O中,如果底邊BC的長為8,那么底角的正切值是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:《第3章 圓》2010年單元測試卷(解析版) 題型:解答題

          已知:三角形ABC內(nèi)接于⊙O,過點A作直線EF.
          (1)如圖(1),AB為直徑,要使得EF是⊙O的切線,只需保證∠CAE=∠______,并證明之;
          (2)如圖(2),AB為⊙O非直徑的弦,(1)中你所添出的條件仍成立的話,EF還是⊙O的切線嗎?若是,寫出證明過程;若不是,請說明理由并與同學(xué)交流.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2003年福建省福州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2003•福州)已知:三角形ABC內(nèi)接于⊙O,過點A作直線EF.
          (1)如圖1,AB為直徑,要使得EF是⊙O的切線,還需添加的條件是?(只須寫出三種情況)
          (2)如圖2,AB為非直徑的弦,∠CAE=∠B,求證:EF是⊙O的切線.

          查看答案和解析>>

          同步練習(xí)冊答案