日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•廈門(mén))已知點(diǎn)O是平面直角坐標(biāo)系的原點(diǎn),直線y=-x+m+n與雙曲線y=
          1x
          交于兩個(gè)不同的點(diǎn)A(m,n)(m≥2)和B(p,q).直線y=-x+m+n與y軸交于點(diǎn)C,求△OBC的面積S的取值范圍.
          分析:先確定直線y=-x+m+n與坐標(biāo)軸的交點(diǎn)坐標(biāo),即C點(diǎn)坐標(biāo)為(0,m+n),D點(diǎn)坐標(biāo)為(m+n,0),則△OCD為等腰直角三角形,根據(jù)反比例函數(shù)的對(duì)稱性得到點(diǎn)A與點(diǎn)B關(guān)于直線y=x對(duì)稱,則B點(diǎn)坐標(biāo)為(n,m),根據(jù)三角形面積公式得到S△OBC=
          1
          2
          (m+n)•n,然后mn=1,m≥2確定S的范圍.
          解答:解:如圖,C點(diǎn)坐標(biāo)為(0,m+n),D點(diǎn)坐標(biāo)為(m+n,0),則△OCD為等腰直角三角形,
          ∴點(diǎn)A與點(diǎn)B關(guān)于直線y=x對(duì)稱,則B點(diǎn)坐標(biāo)為(n,m),
          ∴S=S△OBC=
          1
          2
          (m+n)•n=
          1
          2
          mn+
          1
          2
          n2,
          ∵點(diǎn)A(m,n)在雙曲線y=
          1
          x
          上,
          ∴mn=1,即n=
          1
          m

          ∴S=
          1
          2
          +
          1
          2
          1
          m
          2
          ∵m≥2,
          ∴0<
          1
          m
          1
          2
          ,
          ∴0<(
          1
          m
          2
          1
          4
          ,
          1
          2
          <S≤
          5
          8
          點(diǎn)評(píng):本題考查了反比例函數(shù)圖象與一次函數(shù)的交點(diǎn)問(wèn)題:反比例函數(shù)與一次函數(shù)的圖象的交點(diǎn)坐標(biāo)滿足兩函數(shù)的解析式.也考查了一次函數(shù)的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廈門(mén))已知反比例函數(shù)y=
          m-1x
          的圖象的一支位于第一象限,則常數(shù)m的取值范圍是
          m>1
          m>1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廈門(mén))(1)計(jì)算:5a+2b+(3a-2b);
          (2)在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,1),B(-2,0),C(-3,-1).請(qǐng)?jiān)趫D1上畫(huà)出△ABC,并畫(huà)出與△ABC關(guān)于原點(diǎn)O對(duì)稱的圖形;
          (3)如圖2所示,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.求證:AB∥CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廈門(mén))如圖所示,已知四邊形OABC是菱形,∠O=60°,點(diǎn)M是邊OA的中點(diǎn),以點(diǎn)O為圓心,r為半徑作⊙O分別交OA,OC于點(diǎn)D,E,連接BM.若BM=
          7
          ,
          DE
          的長(zhǎng)是
          3
          π
          3
          .求證:直線BC與⊙O相切.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•廈門(mén)質(zhì)檢)如圖,已知四邊形ABCD是正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PD.
          (1)若∠PAB=37°,正方形的邊長(zhǎng)為5,求PA的長(zhǎng)度;
          (sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
          (2)若PA=PD,過(guò)點(diǎn)P作PE⊥AD,垂足為E,判斷直線PE與半圓的位置關(guān)系并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案