日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 14.如圖,在直角坐標(biāo)系中矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合.點(diǎn)A、C分別在坐標(biāo)軸上,反比例函數(shù)y=$\frac{k}{x}$(k>0)的圖象與AB、BC分別交于點(diǎn)E、F(E、F不與B點(diǎn)重合),連接OE,OF.
          (1)若B點(diǎn)的坐標(biāo)為(4,2),且E為AB的中點(diǎn).
          ①求四邊形BEOF的面積.
          ②求證:F為BC的中點(diǎn).
          (2)猜想$\frac{AE}{BE}$與$\frac{CF}{BF}$的大小關(guān)系,并證明你的猜想.

          分析 (1)①由B的坐標(biāo)得到AB與BC的長(zhǎng),進(jìn)而求出矩形OCBA的面積,由B坐標(biāo),根據(jù)E為AB中點(diǎn),求出E坐標(biāo),代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AEO與三角形OCF的面積,由矩形ABCO面積-三角形AOE面積-三角形OCF面積=四邊形BEOF面積,求出即可;②連接OB,由矩形面積求出三角形OBC面積,由三角形OCF面積得到三角形OBC面積為三角形OCF面積的2倍,而兩三角形高相同,故底BC=2CF,即F為中點(diǎn),得知;
          (2)$\frac{AE}{BE}$=$\frac{CF}{BF}$,理由為:設(shè)B點(diǎn)坐標(biāo)為(a,b)(a>0,b>0),表示出A,C,E,F(xiàn)坐標(biāo),進(jìn)而表示出AE,BE,CF,BF,分別求出$\frac{AE}{BE}$與$\frac{CF}{BF}$的值,驗(yàn)證即可.

          解答 解:(1)①∵B點(diǎn)的坐標(biāo)為(4,2),
          ∴S矩形OCBA=4×2=8,
          ∵E為AB的中點(diǎn),
          ∴E點(diǎn)的坐標(biāo)為(2,2),
          ∵點(diǎn)E、F在雙曲線上,
          ∴k=4,
          ∴S△AEO=S△FCO=$\frac{1}{2}$k=2,
          ∴S四邊形BE0F=S矩形ABCO-S△AEO-S△OFC=8-2-2=4;
          ②連接OB,

          易知S△OBC=$\frac{1}{2}$S矩形ABCO=4,
          ∵S△OFC=2,
          ∴S△OBC=2S△OFC
          ∵S△OCF=$\frac{1}{2}$S△OBC,
          ∴BC=2FC,
          ∴F為BC的中點(diǎn);
          (2)$\frac{AE}{BE}$=$\frac{CF}{BF}$,理由為:
          設(shè)B點(diǎn)坐標(biāo)為(a,b)(a>0,b>0),
          則點(diǎn)A(0,b),C(a,0),E($\frac{k}$,b),F(xiàn)(a,$\frac{k}{a}$),
          ∴AE=|$\frac{k}$|,BE=|a-$\frac{k}$|=|$\frac{ab-k}$|,CF=|$\frac{k}{a}$|,BF=|b-$\frac{k}{a}$|=|$\frac{ab-k}{a}$|,
          ∴$\frac{AE}{BE}$=$\frac{|\frac{k}|}{|\frac{ab-k}|}$=|$\frac{k}{ab-k}$|,$\frac{CF}{BF}$=$\frac{|\frac{k}{a}|}{|\frac{ab-k}{a}|}$=|$\frac{k}{ab-k}$|,
          則$\frac{AE}{BE}$=$\frac{CF}{BF}$.

          點(diǎn)評(píng) 此題考查了反比例函數(shù)綜合題,涉及的知識(shí)有:反比例函數(shù)k的幾何意義,坐標(biāo)與圖形性質(zhì),矩形的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解本題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          16.化簡(jiǎn)下列各式:
          (1)$\sqrt{(1-\sqrt{2})^{2}}$;
          (2)|1-x|-$\sqrt{{x}^{2}}$(x≤0);
          (3)$\sqrt{(x+2)^{2}}$+$\sqrt{(x-3)^{2}}$(-2≤x≤3)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          5.如圖1,將一副三角板的兩個(gè)銳角頂點(diǎn)放到一塊,∠AOB=45°,∠COD=30°,OM,ON分別是∠AOC,∠BOD的角平分線.
          (1)當(dāng)∠COD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)至射線OB與OC重合時(shí)(如圖2),則∠MON的大小為37.5°;
          (2)如圖3,在(1)的條件下,繼續(xù)繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)∠COD,當(dāng)∠BOC=10°時(shí),求∠MON的大小,寫(xiě)出解答過(guò)程;
          (3)在∠COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)過(guò)程中,∠MON=37.5或142.5°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          2.將一副三角板按如圖所示疊放,若設(shè)AB=1,則四邊形ABCD的面積為$\frac{\sqrt{3}+1}{2}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          9.如圖,直線AB、CD交于點(diǎn)O,OE⊥AB,∠EOC=40°,則∠BOD=130度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          19.如圖,已知△ABC,按如下步驟作圖:①以A為圓心,AB長(zhǎng)為半徑畫(huà)。虎谝訡為圓心,CB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)D;③連結(jié)AD,CD.則△ABC≌△ADC的依據(jù)是SSS.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          6.我市“夢(mèng)幻!庇螛(lè)場(chǎng)開(kāi)業(yè)期間,小明和弟弟小軍得到了一張門(mén)票,可是他倆都想去,決定采用摸球的辦法來(lái)確定.他們?cè)谝粋(gè)不透明的文具袋中,裝了僅顏色不同的5個(gè)小球,其中3個(gè)紅球,2個(gè)黑球.
          (1)如果從文具袋中摸出m(m≥1)個(gè)小球,將“摸出的小球中有黑球”記為事件A,若A為必然事件,則m的值為4或5.
          (2)兩人約定,先后從該文具袋中摸出1球(不放回).若兩人所摸出的球顏色相同,自然小明去,否則小軍去.請(qǐng)通過(guò)計(jì)算說(shuō)明本規(guī)則是否公平?若不公平,你認(rèn)為對(duì)誰(shuí)有利?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          3.-5的倒數(shù)與它的相反數(shù)的和為(  )
          A.-$\frac{24}{5}$B.$\frac{26}{5}$C.$\frac{24}{5}$D.-$\frac{26}{5}$

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          4.小明在做解方程作業(yè)時(shí),不小心將方程中的一個(gè)常數(shù)污染了看不清楚,被污染的方程是:2y-$\frac{1}{2}$=$\frac{1}{2}$y-▌,怎么辦呢?小明想了一想便翻看了書(shū)后的答案,此方程的解是y=-$\frac{5}{3}$,于是很快補(bǔ)好了這個(gè)常數(shù),你能補(bǔ)出這個(gè)常數(shù)是多少嗎?它應(yīng)是3.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案