日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 四邊形OABC在平面直角坐標(biāo)系中位置如圖所示,點A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),動點E自A點出發(fā)以每秒2個單位的速度沿A→B→C→O的路線移動,同時,點D以每秒1個單位的速度從O出發(fā)沿著射線OA方向運動,點M為OD的中點,當(dāng)點D與A重合時停止一切運動.
          (1)當(dāng)點D與A重合時,點E的坐標(biāo)是
          (0,2)
          (0,2)
          ;
          (2)設(shè)△MDE的面積為S,運動時間為t,請寫出S與t的函數(shù)關(guān)系式,指出自變量的取值范圍,并求出S的最大值.
          分析:(1)求出AB、BC的長度,然后計算出點D與點A重合需要的時間t,再由點E的運動速度即可得出點E經(jīng)過時間t后的位置.
          (2)分別討論點E位于AB、BC、OC上的情況,依次表示出S關(guān)于t的表達式,結(jié)合t的范圍得出S的最大值,然后比較即可得出S的最大值.
          解答:解:(1)當(dāng)點D與點A重合時,t=10s,則點E運動的路程=2×10=20,
          過點B作BH⊥OA于點H,
          則AB=
          BH2+AH2
          =10,
          又∵BC=4,OC=8,
          故點E所到的位置為(0,2);


          (2)①當(dāng)0<t≤5時,過點B作BH⊥OA,過點E作EF⊥OA于點F,如圖1所示:
          則BH=8,AH=6,
          易證△EFA∽△BHA,EF=2t×
          4
          5
          ,S=
          1
          2
          ×
          t
          2
          ×2t×
          4
          5
          =
          2
          5
          t2
          ,
          ∵當(dāng)t>0時,S隨t的增大而增大,
          ∴t=5時,S=10.
          ②當(dāng)5<t≤7時,如圖2所示:
          S=
          1
          2
          ×
          t
          2
          ×8=2t
          ,
          當(dāng)t=7時,S=14;
          ③當(dāng)7<t≤10時,如圖3所示,
          S=
          1
          2
          ×
          t
          2
          ×(22-2t)=-
          1
          2
          t2+
          11
          2
          t
          ,
          當(dāng)t>
          11
          2
          時,S隨t的增大而減小,
          ∴t=7時,S=14;
          綜上可得:S=
          2
          5
          t2(0<t≤5)
          2t(5<t≤7)
          -
          1
          2
          t2+
          11
          2
          t(7<t≤10)
          ,
          當(dāng)t=7時,S取得最大,最大值為14.
          點評:本題考查了相似形綜合題,涉及了動點問題,解答本題關(guān)鍵是討論點E的位置,注意討論t的取值范圍,繼而確定S關(guān)于t的表達式,要數(shù)形結(jié)合進行思考,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•合山市模擬)矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,其中OA=5,AB=2,拋物線y=-x2+3x的圖象與BC交于D、E兩點.
          (1)求DE的長
          DE=1
          DE=1
          ;
          (2)M是BC上的動點,若OM⊥AM,求點M的坐標(biāo);
          (3)在拋物線上是否存在點Q,使以D、O、Q、M為頂點的四邊形是平行四邊形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖1所示,四個頂點的坐標(biāo)分別為O(0,0),A(10,0),B(8,2
          3
          ),C(0,2
          3
          ),點T在線段OA上(不與線段點重合),將紙片沿過T點的直線折疊,使點A落在射線AB上(記為點A'),折痕TP與射線AB交于點P,設(shè)點T的橫坐標(biāo)為t,折疊后紙片重疊部分(圖2中的陰影部分)的面積為S;
          (1)直接寫出∠OAB的度數(shù);
          (2)當(dāng)紙片重疊部分的圖形是四邊形時,直接寫出t的取值范圍;
          (3)求S關(guān)于t的解析式及S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=2,OC=
          2
          ,則點B的坐標(biāo)是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:單選題

          平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,數(shù)學(xué)公式,則點B的坐標(biāo)是


          1. A.
            (3,1)
          2. B.
            (1,3)
          3. C.
            (2,1)
          4. D.
            (1,2)

          查看答案和解析>>

          同步練習(xí)冊答案